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TD 13 | E4- Régime sinusoïdal forcé et
interférences

I II III IV
Combiner plusieurs éléments ✓ ✓ ✓

Gerer des calculs ✓ ✓
Etudier une résonance ✓ ✓

Analyser un schéma ✓ ✓
Tracer un spectre ✓ ✓

Analyser un comportement asymptotique ✓ ✓
Obtenir une équation différentielle ✓

I Mesure d’impédance (⋆)
On considère le circuit représenté ci-dessous où le tronçon AB est constitué d’une bobine

idéale d’inductance L montée en dérivation avec une résistance R et où le tronçon BD est
constitué d’un condensateur de capacité C. On applique entre les bornes A et D du circuit
une tension sinusoïdale u(t) de pulsation ω.

1. Exprimer l’impédance complexe ZAB de la portion de circuit AB.
2. Exprimer l’impédance complexe totale ZAD du circuit et l’écrire sous la forme

ZAD = a + jb.
3. En déduire l’expression, pour ce circuit, du déphasage ϕu − ϕi entre la tension u(t)

et l’intensité i(t).
4. En déduire pour quelle expression notée ωr de la pulsation ω le circuit est équivalent

à une résistance pure.

II Entrée en résonance d’une suspension (⋆)

On considère le cas d’un véhicule de masse m
roulant à la vitesse (horizontale) v0 sur une route
de profil harmonique y(x) = a sin(kx) avec x =
v0t. On posera par la suite ω = kv0.

Le véhicule est relié aux roues par une suspension,
modélisée par un ressort de longueur à vide l0, et
de raideur k. De plus, on prendre en compte une
force de frottement fluide exercée par l’air ambiant
sur le véhicule d’expression #»

f = −λvy
#»e y.

Dans toute la suite, on notera y(t) l’abscisse du
véhicule et ys(t), l’abscisse du sol.

système m

~ex

~ey

•ys(t)

•y(t)

ys(t) = a sin (kx(t))

k, l0, �

1. Effectuer un bilan des force verticales exercées sur le véhicule
2. En déduire l’équation du mouvement pour l’inconnue y sous sa forme canonique.
On cherche à obtenir une solution particulière yp(t) de cette équation sous la forme

yp(t) = yh(t) + yc avec yh = Y cos(ωt + ϕ), une fonction harmonique, associée à la partie
harmonique du second membre et yc, une fonction constante, associée à la partie constante
du second membre.

3. De quelle équation yc est-elle solution ? Exprimer alors yc en fonction des données
du problème.

4. De quelle équation yh est-elle solution ? On pose alors y
h
(t) = Y cejωt tel que

yh(t) = ℜ(y
h
(t)). Déduire de ce qui précède l’expression de Y c en fonction de

λ, k, m, ω et a.
On pose ω0 =

√
k/m la pulsation propre du système et Q =

√
mk/λ, son facteur de

qualité
5. Vers quelle limite tend l’amplitude Y de yh(t) en basse fréquence ? De même, donner

un équivalent de cette amplitude en haute fréquence. Exprimer ensuite cette amplitude
pour ω = ω0 =

√
k/m en fonction de a et de Q. En déduire la courbe de Y en

fonction de ω pour différentes valeurs du facteur de qualité (par exemple 0,5 ; 1 ; 2)
6. La résonance est-elle obtenue pour toute les valeurs possible du facteur de qualité ?

S’agit-il du même type de résonance que celle obtenue pour l’intensité d’un circuit
RLC ?

7. (⋆⋆) Déterminer précisément, et par le calcul, à partir de quelle valeur notée Qc la
résonance apparaît. Cette dernière se caractérise par l’apparition d’un maximum
local dans la courbe |Y (ω)|.
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III Étude de la résonance (⋆⋆)

Le circuit suivant est alimenté par une tension
sinusoïdale e(t) = E0

√
2 cos(ωt), avec E0 > 0.

On note u(t) = U0
√

2 cos(ωt + ϕu) la tension aux
bornes de la résistance et i(t) = I0

√
2 cos(ωt+ϕi)

le courant traversant la bobine.

On donne R = 100 Ω, L = 10 mH et C = 10 µF.

e(t) u(t)

i

RL

C

1. La constante E0 correspond-elle à l’amplitude ou à la valeur efficace du signal e(t).
On justifiera la réponse en définissant ces deux termes.

III.1 Étude de u(t)
2. On note u(t) = U0

√
2 exp(jωt) le complexe associé au signal u(t) tel que u(t) = ℜ(u(t)).

Montrer que U0 peut se mettre sous la forme :

U0 =
E0 × (jx)2

1 + jx/Q + (jx)2

où x = ω/ω0 est la pulsation réduite, ω0 la pulsation propre et Q le facteur de qualité.
Exprimer les constantes ω0 et Q en fonction de L, C et R.

3. Exprimer U0(x) en fonction de E0, x et Q.
4. Représenter le schéma électrique équivalent à basse fréquence et en déduire la limite

de U0(x) à basse fréquence. Vérifier ce résultat à l’aide de la réponse à la question
précédente. On donnera l’équivalent mathématique de U0(x) à basse fréquence.

5. Reprendre la question précédente pour les hautes fréquences.
6. Définir la notion de résonance. À partir de l’étude des limites, peut-on dire qu’il

existe nécessairement une résonance de la tension u(t) ?
7. Montrer qu’il existe une pulsation réduite de résonance xr si et seulement si Q > 1/

√
2.

Pour cela, on écrira U0(x) sous la forme U0(x) =
E0√
f(x)

, où f(x) est une fonction

que l’on définira. En déduire l’expression de la pulsation de résonance ωr en fonction
de ω0 et Q. Comparer ωr à ω0.

8. Donner l’expression de U0 pour x = 1. Calculer le facteur de qualité.
9. Tracer l’allure de U0 en fonction de x.

10. Exprimer la phase ϕu en fonction de x et Q. Faire l’étude des limites et tracer l’allure
de ϕu en fonction de x.

III.2 Étude de i(t)
11. On note i(t) = I0

√
2 exp(jωt) le complexe associé au signal i(t) tel que i(t) = ℜ(i(t)).

Montrer que I0 peut se mettre sous la forme :

I0 =
Imax

1 + jQ(x − 1/x)

où x = ω/ω0 est la pulsation réduite, ω0 la pulsation propre et Q le facteur de qualité.
Exprimer Imax en fonction de E0, L, C et R.

12. Justifier que l’expression de Imax obtenue est homogène.
13. Exprimer I0 en fonction de Imax, x et Q. Faire l’étude des limites de la fonction I0(x).

On précisera l’équivalent mathématique de I0(x) à haute et basse fréquences.
14. A partir de l’étude des limites, peut-on dire qu’il existe nécessairement une résonance

de l’intensité i(t) ?
15. Déterminer la pulsation réduite à la résonance.
16. Définir la bande passante ∆x = [x1, x2]. Exprimer x1 et x2 en fonction de Q.
17. Tracer l’allure de I0 en fonction de x. On placera la bande passante sur le graphique.
18. Exprimer la phase ϕi en fonction de x et Q. Faire l’étude des limites et tracer l’allure

de ϕi en fonction de x. On placera la bande passante sur le graphique.

IV Détermination d’une inductance (⋆ ⋆ ⋆)

On réalise le montage représenté ci-contre, et on
constate sur l’oscilloscope que pour une fréquence
f0 = 180 Hz, les signaux recueillis sur les voies X
et Y sont en phase.

Données : R = 100 Ω et C = 10 µF.

e(t) R

L, r

R

C

X Y

1. En déduire l’expression puis la valeur de l’inductance L de la bobine.

Éléments de réponses :

E1 Q4 : Le dipôle se comporte comme un résistor pour ωr = R/L√
R2(C/L)−1

E3 Q7 : xr =
1√

1 − 1/(2Q2)
si Q > 1/

√
2

E4 Q1 : L = 44 mH
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