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TD 13 | E4- Régime sinusoïdal forcé et
interférences

I II III IV
Combiner plusieurs éléments ✓ ✓ ✓

Gerer des calculs ✓ ✓
Etudier une résonance ✓ ✓

Analyser un schéma ✓ ✓
Tracer un spectre ✓ ✓

Analyser un comportement asymptotique ✓ ✓
Obtenir une équation différentielle ✓

I Mesure d’impédance (⋆)
On considère le circuit représenté ci-dessous où le tronçon AB est constitué d’une bobine

idéale d’inductance L montée en dérivation avec une résistance R et où le tronçon BD est
constitué d’un condensateur de capacité C. On applique entre les bornes A et D du circuit
une tension sinusoïdale u(t) de pulsation ω.

1. Exprimer l’impédance complexe ZAB de la portion de circuit AB.

Réponse :

1
ZAB

= 1
R

+ 1
jωL

⇒ ZAB = RjωL

R + jωL

2. Exprimer l’impédance complexe totale ZAD du circuit et l’écrire sous la forme ZAD =
a + jb.

Réponse :

ZAD = ZAB + 1
jCω

⇒ ZAD =
L
C − jR

Cω + jωRL

R + jωL
= a + jb

avec
a = 1

R
(

1
(Lω)2 + 1

R2

) ; b = 1
Lω
( 1

L2ω2 + 1
R2

) − 1
Cω

a = RL2ω2

R2 + L2ω2 ; b = R2Lω

R2 + L2ω2 − 1
Cω

3. En déduire l’expression, pour ce circuit, du déphasage ϕu − ϕi entre la tension u(t)
et l’intensité i(t).

Réponse :

ϕu − ϕi = arg(ZAD) = arctan
(

b

a

)
car a > 0.

On trouve

ϕu − ϕi = arctan
(

R

Lω
− R

Cω(Lω)2 − 1
RCω

)
.

4. En déduire pour quelle expression notée ωr de la pulsation ω le circuit est équivalent
à une résistance pure.

Réponse :
On veut trouver ωr tel que b = 0.

b = 0 donc 1
(Lωr)2 + 1

R2 = C

L
donc ωr = R√

LCR2 − L2
= R/L√

R2(C/L) − 1

Cette expression est bien homogène car R/L a pour dimension l’inverse d’un temps
tandis que R2(C/L) = Q2

// est bien sans dimension (facteur de qualité au carré).
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II Entrée en résonance d’une suspension (⋆)

On considère le cas d’un véhicule de masse m
roulant à la vitesse (horizontale) v0 sur une route
de profil harmonique y(x) = a sin(kx) avec x =
v0t. On posera par la suite ω = kv0.

Le véhicule est relié aux roues par une suspension,
modélisée par un ressort de longueur à vide l0, et
de raideur k. De plus, on prendre en compte une
force de frottement fluide exercée par l’air ambiant
sur le véhicule d’expression #»

f = −λvy
#»e y.

Dans toute la suite, on notera y(t) l’abscisse du
véhicule et ys(t), l’abscisse du sol.

système m

~ex

~ey

•ys(t)

•y(t)

ys(t) = a sin (kx(t))

k, l0, �

1. Effectuer un bilan des force verticales exercées sur le véhicule

Réponse :
On se place en base cartesienne et on obtient pour le bilan des forces

— Le poids #»

P = −mg #»e y

— La force de frottement #»

f = −λvy
#»e y

— La force de rappel élastique #»

F = −k(l − l0) #»e y avec l = y(t) − ys(t)

2. En déduire l’équation du mouvement pour l’inconnue y sous sa forme canonique.

Réponse :
On applique le principe fondamental de la dynamique au véhicule dans le référentiel
galiléen lié au sol selon l’axe vertical #»e y.

m
d2y

dt2 = −mg − λ
dy

dt
− ky + kys + kl0

soit sous la forme canonique

d2y

dt2 + λ

m

dy

dt
+ k

m
y = k

m
(ys + l0) − g

On cherche à obtenir une solution particulière yp(t) de cette équation sous la forme
yp(t) = yh(t) + yc avec yh = Y cos(ωt + ϕ), une fonction harmonique, associée à la partie
harmonique du second membre et yc, une fonction constante, associée à la partie constante
du second membre.

3. De quelle équation yc est-elle solution ? Exprimer alors yc en fonction des données
du problème.

Réponse :
On ne garde que la partie constante du second membre d’où

d2yc

dt2 + λ

m

dyc

dt
+ k

m
yc = k

m
(l0) − g

d’où l’on déduit yc = l0 − mg/k .

4. De quelle équation yh est-elle solution ? On pose alors y
h
(t) = Y cejωt tel que yh(t) =

ℜ(y
h
(t)). Déduire de ce qui précède l’expression de Y c en fonction de λ, k, m, ω et

a.

Réponse :
Comme pour la question précédente, on ne garde cette fois ci que la partie harmonique
du second membre d’où

d2y

dt2 + λ

m

dy

dt
+ k

m
y = k

m
a cos(ωt − π/2)

en remarquant que sin(ωt) = cos(ωt−π/2). On passe ensuite l’équation aux complexe
d’où

(jω)2Y c + λ

m
jωY c + k

m
Y c = k

m
ae−jπ/2ejωt

d’où l’on déduit après simplification

Y c = ae−jπ/2

1 + λ
k jω + m

k (jω)2

On pose ω0 =
√

k/m la pulsation propre du système et Q =
√

mk/λ, son facteur de
qualité
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5. Vers quelle limite tend l’amplitude Y de yh(t) en basse fréquence ? De même, donner
un équivalent de cette amplitude en haute fréquence. Exprimer ensuite cette amplitude
pour ω = ω0 =

√
k/m en fonction de a et de Q. En déduire la courbe de Y en

fonction de ω pour différentes valeurs du facteur de qualité (par exemple 0,5 ; 1 ; 2)

Réponse :
On a Y = |Y c| → a lorsque ω → 0. De même, en haute fréquences, on obtient
Y ∼ k

m
a

ω2 donc l’amplitude tend vers 0 lorsque ω → +∞.
De plus, on a pour ω = ω0, Y = a k

λω0
= a mk

λ = aQ

Ces expressions permettent de tracer les courbes demandées.

x = !
!0

UCm

Em

x = 1

Q = 0, 5

Q = 1p
2

Q = 2

Q = 3

6. La résonance est-elle obtenue pour toute les valeurs possible du facteur de qualité ?
S’agit-il du même type de résonance que celle obtenue pour l’intensité d’un circuit
RLC ?

Réponse :
On observe graphiquement que la résonance n’apparait que lorsque Q est élevé. Ce
résultat est contraire à celui obtenu en cours. C’est donc bien un autre type de
résonance que celui en intensité. C’est logique puisque l’élongation du système ressort
est analogue à la charge du condensateur, soit à C près analogue à la tension ; en
étudiant la vitesse du système on trouverait la même résonance.

7. (⋆⋆) Déterminer précisément, et par le calcul, à partir de quelle valeur notée Qc la
résonance apparaît. Cette dernière se caractérise par l’apparition d’un maximum local
dans la courbe |Y (ω)|.

Réponse :
On a

|Y | = a

1 + j ω
ω0Q − ω2

ω2
0

On peut alors poser x = ω/ω0, appelée la pulsation réduite, afin d’alléger les calculs.
Cette notation sera régulièrement reprise en RSF.
Il y a résonance lorsque |Y | passe par un extremum local pour x ∈]0, +∞[. Il
convient alors d’étudier les variation du module, où plus simplement, du carré de son
dénominateur :

f(x) = (1 − x2)2 + x2/Q2 ⇒ f ′(x) = 2(−2x)(1 − x2) + 2x/Q2

L’extremum est obtenu lorsque la dérivée est nulle (pour x > 0) soit après simplifica-
tion par 2x :

f ′(x) = 0 ⇒ −2(1 − x2) + 1
Q2 = 0 ⇒ x2 = 1 − 1

2Q2

Cette dernière équation admet une solution sur ]0, +∞[ seulement si 1 − 1/(2Q2) > 0
donc si

Q >
1√
2

III Étude de la résonance (⋆⋆)

Le circuit suivant est alimenté par une tension
sinusoïdale e(t) = E0

√
2 cos(ωt), avec E0 > 0.

On note u(t) = U0
√

2 cos(ωt + ϕu) la tension aux
bornes de la résistance et i(t) = I0

√
2 cos(ωt+ϕi)

le courant traversant la bobine.

On donne R = 100 Ω, L = 10 mH et C = 10 µF.

e(t) u(t)

i

RL

C
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1. La constante E0 correspond-elle à l’amplitude ou à la valeur efficace du signal e(t).
On justifiera la réponse en définissant ces deux termes.

Réponse :
Le signal e(t) est sinusoïdal. L’amplitude est la valeur maximale, donc Emax = E0

√
2.

La valeur efficace d’un signal sinusoïdal est Eeff = Emax/
√

2 = E0. Donc ici E0
correspond à la valeur efficace de e(t).

III.1 Étude de u(t)
2. On note u(t) = U0

√
2 exp(jωt) le complexe associé au signal u(t) tel que u(t) = ℜ(u(t)).

Montrer que U0 peut se mettre sous la forme :

U0 =
E0 × (jx)2

1 + jx/Q + (jx)2

où x = ω/ω0 est la pulsation réduite, ω0 la pulsation propre et Q le facteur de qualité.
Exprimer les constantes ω0 et Q en fonction de L, C et R.

Réponse :
Soit Zeq l’impédance équivalente à l’association en parallèle de la bobine et de la
résistance. On applique un pont diviseur de tension :

U0 =
Zeq

Zeq + 1/jCω
E0 = E0

1 +
1

jCωZeq

avec
1

Zeq
=

1
jLω

+
1
R

=
R + jLω

jLRω

U0 = E0

1 +
R + jLω

jCω × jRLω

= E0 × LC(jω)2

1 + jLω/R + LC(jω)2 ; ω0 =
1

√
LC

; Q = R

√
C

L

3. Exprimer U0(x) en fonction de E0, x et Q.

Réponse :

U0(x) est le module de U0 : U0 =
x2√

(1 − x2)2 + x2/Q2
E0

4. Représenter le schéma électrique équivalent à basse fréquence et en déduire la limite
de U0(x) à basse fréquence. Vérifier ce résultat à l’aide de la réponse à la question
précédente. On donnera l’équivalent mathématique de U0(x) à basse fréquence.

Réponse :
A basse fréquence, le condensateur se comporte comme un interrupteur ouvert et la
bobine comme un fil.

e(t) u(t)RL

C
La tension u(t) est celle aux bornes d’un
fil, donc lim

ω→0
U0 = 0 .

Équivalent de U0(x) :
U0(x) ∼

x≪1
x2E0 −→

x→0
0

5. Reprendre la question précédente pour les hautes fréquences.

Réponse :
A haute fréquence, le condensateur se comporte comme un fil et la bobine comme un
interrupteur ouvert.

e(t) u(t)R

C

L

La tension u(t) est celle du générateur,
donc lim

ω→+∞
U0 = E0 .

Équivalent de U0(x) :

U0(x) ∼
x≫1

x2
√

x4
E0 = E0

6. Définir la notion de résonance. À partir de l’étude des limites, peut-on dire qu’il
existe nécessairement une résonance de la tension u(t) ?

Réponse :
La résonance d’un signal correspond à un maximum du signal pour une pulsation
non nulle. Dans le cas de u(t), l’étude des limites ne permet pas de conclure quant à
l’existence d’un maximum pour x donné.
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7. Montrer qu’il existe une pulsation réduite de résonance xr si et seulement si Q > 1/
√

2.

Pour cela, on écrira U0(x) sous la forme U0(x) =
E0√
f(x)

, où f(x) est une fonction

que l’on définira. En déduire l’expression de la pulsation de résonance ωr en fonction
de ω0 et Q. Comparer ωr à ω0.

Réponse :
On réécrit U0(x) de manière à ce que seul le dénominateur dépende de x :

U0(x) = E0√
(1/x2 − 1)2 + 1/(x2Q2)

On pourrait faire un changement de variable en posant u = 1/x2.
La fonction U0(x) est maximale quand la fonction f(x) = (x−2 − 1)2 + x−2/Q2 est
minimale. On dérive par rapport à x :

df

dx
= 2(x−2 − 1) × (−2x−3) + (−2x−3)/Q2 = −2x−3

(
2
(

1
x2 − 1

)
+ 1

Q2

)
On cherche la pulsation réduite xr telle que f ′(xr) = 0 :

f ′(xr) = 0 ⇔ 2
(

1
x2

r

− 1
)

+ 1
Q2 = 0 ⇔ 1

x2
r

= 1 − 1
Q2

Cette équation admet une solution réelle si 1 −
1

Q2 > 0, soit Q > 1/
√

2, alors :

xr =
1√

1 − 1/(2Q2)
si Q > 1/

√
2

On constate que xr > 1, donc ωr = xrω0 > ω0 .

8. Donner l’expression de U0 pour x = 1. Calculer le facteur de qualité.

Réponse :
U0(x = 1) = QE0 et Q = 3, 2

9. Tracer l’allure de U0 en fonction de x.

Réponse :

0 1 2 3
x

0

1

2

3

U
0/E

0

xr > 1

0 1 2 3
x

0

/2u

10. Exprimer la phase ϕu en fonction de x et Q. Faire l’étude des limites et tracer l’allure
de ϕu en fonction de x.

Réponse :
ϕu = arg(U0), or la partie réelle du dénominateur de U0 change de signe en fonction
de x, on ne peut pas appliquer la fonction arctangente. On réécrit U0 en multipliant
au numérateur et au dénominateur par −j :

U0 =
jE0x2

x/Q − j(1 − x2) ⇒ ϕu(x) = π/2 + arctan
(

Q(1 − x2)
x

)

Étude des limites :
— limx→0 ϕu(x) = π

— limx→+∞ ϕu(x) = 0
— ϕu(x = 1) = π/2

III.2 Étude de i(t)
11. On note i(t) = I0

√
2 exp(jωt) le complexe associé au signal i(t) tel que i(t) = ℜ(i(t)).

Montrer que I0 peut se mettre sous la forme :

I0 =
Imax

1 + jQ(x − 1/x)
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où x = ω/ω0 est la pulsation réduite, ω0 la pulsation propre et Q le facteur de qualité.
Exprimer Imax en fonction de E0, L, C et R.

Réponse :
On applique la loi d’Ohm généralisée sur la bobine :

I0 = U0

jLω
=

E0RC/L

1 + jR(Cω − 1/(Lω))

Par identification, on retrouve les expressions de Q et ω0 et on a Imax = E0RC/L .

12. Justifier que l’expression de Imax obtenue est homogène.

Réponse :
On sait que [RC] = [L/R] = T :

[E0RC/L] = [E0/R] × [R2C/L] = I ×
[RC]
[L/R] = I

C’est bien une intensité électrique.

13. Exprimer I0 en fonction de Imax, x et Q. Faire l’étude des limites de la fonction
I0(x). On précisera l’équivalent mathématique de I0(x) à haute et basse fréquences.

Réponse :
I0 est le module de I0 :

I0(x) = Imax√
1 + Q2(x − 1/x)2

Étude des limites :
— limx→0 I0(x) = limx→0 Imaxx/ = 0
— limx→+∞ I0(x) = limx→+∞ Imax/(Qx) = 0

14. A partir de l’étude des limites, peut-on dire qu’il existe nécessairement une résonance
de l’intensité i(t) ?

Réponse :
Comme I0(x) > 0 et que les limites à haute et basse fréquences sont nulles, il existe
nécessairement une résonance en intensité.

15. Déterminer la pulsation réduite à la résonance.

Réponse :
I0(x) est maximale pour xr = 1, alors I0(x = 1) = Imax.

16. Définir la bande passante ∆x = [x1, x2]. Exprimer x1 et x2 en fonction de Q.

Réponse :
Les valeurs de x ∈ ∆x vérifient I0(x) ≥ Imax/

√
2 . On cherche les solutions de

l’équation I0(x) = Imax/
√

2 :

Imax√
1 + Q2(x − 1/x)2

= Imax√
2

⇔ (Q(x − 1/x))2 = 1 ⇔ Q(x − 1/x) = ±1

On obtient deux trinômes de même discriminent :

Qx2 ± x − Q = 0 ; ∆ = 1 + 4Q2

Parmi les quatre solutions, seules deux sont positives :

x1 = −1 +
√

1 + 4Q2

2Q
x2 = 1 +

√
1 + 4Q2

2Q

On retrouve ∆x = 1/Q, soit
∆ω

ω0
= 1/Q.

17. Tracer l’allure de I0 en fonction de x. On placera la bande passante sur le graphique.

Réponse :
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18. Exprimer la phase ϕi en fonction de x et Q. Faire l’étude des limites et tracer l’allure
de ϕi en fonction de x. On placera la bande passante sur le graphique.

Réponse :
ϕi = arg(I0). La partie réelle du dénominateur de I0 est toujours positive, donc on
peut utiliser la fonction arctangente :

ϕi = − arctan[Q(x − 1/x)]

— limx→0 ϕi(x) = π/2
— limx→+∞ ϕi(x) = −π/2
— ϕi(x = 1) = 0
— ϕi(x1) = π/4 et ϕi(x2) = −π/4

IV Détermination d’une inductance (⋆ ⋆ ⋆)

On réalise le montage représenté ci-contre, et on
constate sur l’oscilloscope que pour une fréquence
f0 = 180 Hz, les signaux recueillis sur les voies X
et Y sont en phase.

Données : R = 100 Ω et C = 10 µF.

e(t) R

L, r

R

C

X Y

1. En déduire l’expression puis la valeur de l’inductance L de la bobine.

Réponse :
Sur la voie X, on visualise e(t), et sur la voie Y , on visualise la tension Ri(t). S’il
n’y a pas de déphasage entre ces deux voies, c’est que le courant i(t) délivré par
le générateur est en phase avec la tension e(t) délivrée par le générateur. Donc
l’impédance totale du circuit est un réel (partie imaginaire nulle).
Exprimons l’impédance totale : Z = r + jLω + Z ′ + R où Z ′ est l’impédance de
l’association en parallèle de la résistance R et de la capacité C.

Z ′ = R

1 + jRCω
⇒ Z = r + R + jLω + R

1 + jRCω

⇔ Z = r + R + R

1 + (RCω)2 + j

(
Lω − R2Cω

1 + (RCω)2

)

On veut Im[Z] = 0, soit L =
R2C

1 + (RCω)2 = 44 mH .

Éléments de réponses :

E1 Q4 : Le dipôle se comporte comme un résistor pour ωr = R/L√
R2(C/L)−1

E3 Q7 : xr =
1√

1 − 1/(2Q2)
si Q > 1/

√
2

E4 Q1 : L = 44 mH
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