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I 1T 11 v v VI
Réaliser une approximation v’ v
Analyser la cinématique v/ v
Gerer des calculs v/ v v
Faire preuve de sens physique v v
Etablir un bilan des actions v v
Etudier un équilibre v v
Résoudre une équation différentielle v v
Choisir un théoreme énergétique v Vv v v
Obtenir une équation différentielle v v
L’énergie et le pendule (x)
On consideére un pendule simple constitué d’une masse A
m accrochée au bout d’un fil de longueur L. Tant que -
le fil est tendu, on repere la position de la masse par
I’angle 6 représenté sur la figure ci-contre. On néglige les L
ﬁrottements. -
A Tinstant initial, 8(¢ = 0) = 0° et on donne au mobile
une vitesse purement orthoradiale de norme vy telle que > 0 it
les oscillations restent de faible amplitude. Par choix, S~ -
lorigine du repére sera prise a l'intersection de la trajec- —6’

toire de M avec la verticale.

1. Déterminer ’équation différentielle sur la variable 0(t) vérifiée par le pendule, d laide
d’une loi portant sur U’énergie. En déduire 0(t).

Réponse :
L’énergie mécanique est la somme de 1’énergie cinétique et de 1’énergie potentielle de
pesanteur (avec axe (Oz) vertical ascendant) :

1 1 :
B, — imvz + mgz + cst = 3 (Lo )2 +mgL(1 — cos @) + cst.

Le poids est une force conservative. La tension du fil ne travaille pas car cette force

est toujours orthogonale au vecteur vitesse et au vecteur déplacement élémentaire.

On peut alors appliquer le théoréme de la puissance mécanique (TPM) a M dans
Rgal :

dE,, gas )

B P, .=0 = mL00+0mgLsinf =0,
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d’ot, en divisant par 6,
. g .
0+ =sinf = 0.
+ I sin

Les oscillations sont de faible amplitude donc ’équation précédente peut se linéariser
pour obtenir une équation type oscillateur harmonique.

0(t) = Acos(wot) + B sin(wot) avec wo = 4/ %,

avec les conditions initiales #(0) = 0 et #(0) = vy/L, on obtient aprés calcul :

0(t) = LL(EO sin(wt) |,

Remarque. Il est aussi possible d’'utiliser la loi de 1’énergie cinétique ou la loi de la
puissance cinétique pour trouver le méme résultat (tant que 'on ne considére qu’un
point matériel, ces trois lois sont équivalentes).

. Quelle altitude maximale zy,x est atteinte par ce pendule. On wutilisera pour cela

Dexpression de 0(t) obtenue précédemment, dans le cadre de 'approximation des petits
angles.

On rappelle que Ve < 1, cos(e) =~ 1 —¢2/2

Réponse :
L’altitude est maximale lorsque € passe par un extremum (lorsque le sinus vaut 1 ou
-1) donc par exemple, pour le maximum de droite, lorsque 6 = 6,,, = vo/(Lwy)

L’altitude correspondante s’obtient par étude géométrique :

z =L — Lcos(6,,) = L(1 — cos(6 ))NL%—Uf8
max — m) — m)) ~ 9 _29

. Déterminer ensuite l’expression de l’altitude mazimale zmax atteinte par ce pendule

sans aucune approximation, a l'aide d’un théoréme énergétique, et comparer au
résultat précédent.

Réponse :
L’énergie mécanique a 'instant initiale est, en choisissant I’énergie potentielle nulle a
6 =0 (donc en z =0) :

1
E,, (initiale) = imvg.
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L’énergie mécanique lorsque le pendule est le plus haut possible est (I’énergie cinétique
étant alors nulle) :
E,,(zmax) = mgzmax,

On applique alors le théoreme de I’énergie mécanique entre ces deux états, d’ou :
L5
AE’UL = Wnc =0= 577“}0 = MgZmax,

donc

%
2¢ [

Zmax —

Ce résultat correspond bien a celui obtenu précédemment.

II Distance minimale d’approche (%)

1. Rappelez Uexpression de la force d’interaction coulombienne entre deuzx charges q; et
q2 séparées d’une distance r.

Réponse :

TODO

2. Rappelez la relation entre le travail élémentaire d’une force conservative et son énergie
potentielle.

Réponse :
TODO

3. Déterminez l’énergie potentielle électrostatique dont dérive la force d’interaction
coulombienne. On la supposera nulle a Uinfini.

Réponse :
— _1 @92
EP T 4meg T

Une particule de masse m et de charge +2e est lancée vers un noyau d’atome immobile de

charge +Ze. Elle vient de I'infini avec une vitesse initiale v3 comme représentée ci-dessous.
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-— >

d

4. Pourquoi la particule ne peut-elle pas percuter le noyau ¢ Quelle est sa vitesse
lorsqu’elle est au plus proche du noyau ¢

Réponse :
TODO

5. Calculez la distance minimale d a laquelle elle peut s’approcher en fonction de Z, e,
m, vg et gg.

Réponse :
Ze?

On trouve d = 5
TEQMUG

6. Faites l'application numérique pour Z = 56 (noyau d’or), m = 6,63 x 10727 kg, et
L —9x10°SI. puis vo = 1000 ms~"

4meq

Réponse :
TODO

IIT Résolution d’équations différentielles (x)

Trouvez la forme générale des solutions des EDs suivantes en utilisant la méthode
de séparation des variables. On fera apparaitre des instants t; et to.

Page 2/ 6



TD 10 | M3 2025,/2026 Energétique du point

— La force de rappel élastique (tant que | > lg) : Ep, ¢ = (k/2)(I — h)? avec | = 2.

1. E +ar=0 2. 1 + 86> =0 On considére ensuite trois états :

i i — A :la totalité de I’énergie du Marsupilami (z = [,,,) se trouve sous forme d’énergie

Réponse : g Réponse : potentielle élastique et d’énergie potnentielle de pesanteur (vitesse nulle)

On récrit cette équation £ + adt =0 On récrit cette équation 3¢ = —Adt et
¢ on inte L torms - e b ; 0 B : la majorité de son énergie se trouve sous forme d’énergie cinétique (au moment
et on integre chaque termes - on integre chaque terme - ou il décolle, z = ly) (+ une petite partie sous forme d’énergie potentielle de
5 to 0, t pesanteur car il est maintenant a une hauteur lp).
/dj + /adt =0= In(|za/21]) = —al(ts — t1) ig _ /ﬁdt N 7[i _ i] tC la tgtfyhtﬁ de son ]energle se trouve sous forme d’énergie potentielle de
z ; ¢ ; 02 6 pesanteur (lorsqtgﬂl—ies/ﬁ (#2la-Hanteur z = h). En effet, la vitesse est nulle au plus
1 1

haut de la trajectoire, et le ressort n’intervient plus car son extrémité basse est

a(tz—t1) .,
laissée libre.

=x9 = £|z1|e”® alte=t) — 70 = Ae~®

On peut alors appliquer le théoréme de 1’énergie mécanique (TEM) au Marsupilami

en posant A = =|z;|. On retrouve
P 1] entre les états A et B :

bien la solution générale de I’équation
différentielle d’ordre 1 a coefficients

1 2
constants en prenant t; = 0 et to = t. ABp = Wne=0= ik(lm = lo)” + mgly = mgh

On en déduit que :

2mg(h — )

RETAE =4,1x10° N/m |
m — L0

IV~ Le Marsupilami (xx) k=

Le Marsupilami est un animal de bande dessinée créé par 5
Franquin aux capacités physiques remarquables, en parti- MARSUPI I-AM'
culier grace a sa queue qui possede une force importante. &

Pour se déplacer, le Marsupilami enroule sa queue comme
un ressort entre lui et le sol et s’en sert pour se propulser
vers le haut.

2. Quelle est sa vitesse v lorsque la queue quitte le sol ?

Réponse :
De méme, on applique le TEM entre les états B et C :

On note [y = 2m la longueur a vide du ressort équivalent.
Lorsqu’il est completement comprimé, la longueur du ressort
est I, = 50cm. La masse m de l'animal est 50kg et la
queue quitte le sol lorsque le ressort mesure /. On prendra
g=10m/s%

AE, =W, =0=|v=1/2g9(h—1p) =12,5m/s|

1. Quelle est la constante de raideur du ressort équivalent si la hauteur maximale d’un V Glissades (* * *)
saut est h =10m ¢
On considére un point matériel M de masse m qui glisse sans frottement de A d’altitude
Réponse : z4 = 0 a B suivant trois trajectoires distinctes :
On s’interresse au Marsupilami, de masse m, dans le référentiel 1ié au sol, et supposé

o . R o 2 Y — soit le long d’un plan incliné d’un angle « par rapport a ’horizontale
galiléen. On utilise un repere cartésien (O, €,), avec € vers le haut.

Bilan des actions : — soit le long d’un profil circulaire concave de rayon R = h

~ Le poids : E,, = mg> — soit le long d’un profil circulaire convexe de rayon R = h
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Dans les trois cas le dénivelé entre le point de départ A et le point d’arrivée B est h. On se
placera dans le référentiel du laboratoire supposé galiléen. Réponse :
Il s’agit d’'une question purement cinématique :

A A
T =0,€s+0,€, =0(cos(a)€, +sin(a)e,)
or, on a aussi v, = 2 d’ott 'on déduit par identification z = sin(a)v = v =
1 < .
0

o = 459 B ,
N o o . (b) Intégrez alors lintégrale premiére du mouvement (ici, l’énergie mécanique F,,)
vZ  Cas1 X vz Cas 2 v:  Cas3 entre les points A et B puis déterminez le temps t1 mis par le point M pour

parvenir au point B.

1. En supposant que M quitte A sans vitesse, déterminez la vitesse d’arrivée du point

M en B. Cette vitesse dépend-elle du chemin suivi ? Réponse :

L’intégrale premieére du mouvement s’écrit F, + E. = Fjy.
Initialement, E.(A) =0 et E,(A) =0. On a donc Ey = 0.

1
2

Réponse :
On fait le bilan des forces qui s’exerce sur le point M, dans le référentiel supposé
galiléen lié & la piste, et en repeére cartésien :

Par ailleurs, on a B, = —mgz et B, = mw?. L’intégrale premiére du mouvement

donne alors 1
mgz — im(\@z)z =0=g2—-2=0

— Le poids tel que E, = —mgz (axe dirigé vers le bas!).
— La réaction du support R = Ry, qui ne travaille pas (perpendiculaire au Comme z augmente au cours du temps, soit Z > 0, il vient 2 = \/gz
déplacement)

On sépare les variables z et t :

Le théoréeme de I’énergie mécanique appliqué a M, entre le point de départ A et le d

point d’arrivé B donne : 9 adt
5=V

AE, =Wye=0=>FE. s+ E, a=FE.p+ EpB
On inteégre ensuite entre t = 0 et ¢ = ¢1, instants qui correspondent & z = 0 et

Or,ona E. 4 =0carvqg =0et B, 4 = —mgza puis Ep p = —mgzp. Ainsi, z=h:

h t1 h
LI foah e /dt: dt /d—z=2 h=2vh
§mv3—mgh:0:> vp = \/2gh /0\/2 \/§0 Vgdt or 0 vz [2V2] vh

autres profils. En effet, on a pas utilisé d’information liée au profil entre A et B dans Finalement, on obtient

La vitesse obtenue en B ne dépend pas du chemin suivi et sera la méme pour les i
ty =24/ —
cette démonstration.

3. Utilisez la méme méthode pour déterminer le temps to mis par le point M pour

2. On s’interresse alors au premier profil (cas 1). effectuer le trajet AB sur le profil circulaire concave (cas 2). Montrez qu’il s’exprime

(a) Montrez que la norme de la vitesse v s’exprime en fonction de Z uniquement : sous la forme :
v =2z , h /’2' a6
2=1/5=
29 Jo +/sinf
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Réponse :
Dans cette configuration, 1’énergie potentielle s’écrit

1
E, = —mgz = —mghsin€ et I’énergie cinétique FE, = §mv2

avec OM = he, donc T = hf€y d’'ou
1 .
E. = 5mh292

Ainsi, l'intégrale premiere du mouvement du systéme est la suivante :

%mh29‘2—mghsin9=E0:O$9.2: %sin&#ézq/%sin&: %zq/%sin@

On sépare les variables t et 6 :

i de
29 +/sin @

Pour déterminer to il suffit alors d’intégrer entre ¢t = 0 et t = t5, instants qui

correspondent respectivement & # =0 et 6 = Z. On a donc finalement

5"

t—/tzdt— ’“‘/g 9
? 0 29 Jo +/sin#

dt =

jus
. On donne [ \/sdieﬂ

parcourt pour les deux trajets. Commentez.

~ 2,62. Comparez les distances parcourues et les temps de

Réponse :

On a t1:2 ﬁ
)

h
et t2z2,62,/izw\/zzz 2’62\/3:» ty 1,85 1.
2g v2'Vog 1,41\ g g

Ainsi, le temps to est plus court que le temps t; bien que le chemin soit plus long
(mh/2 pour le deuxiéme cas et hy/2 pour le premier). La vitesse moyenne sur le trajet
2 est donc plus importante.
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5.

VI

Pour le cas 3, montrer qu’il existe un angle 6y €]0,7/2[ & partir duguel le point
matériel M va quitter la piste.

Réponse :
On effectue alors le bilan des forces en base polaire :
— Le poids : P = —mg(cos(0) €, — sin(6)€y)

-

— La réaction normale du support : R, = R,, €, avec R,, > 0 sinon le mobile
quitte la piste.

L’accélération s’exprime en base polaire : @ = RI€y — RO2€,. Le mobile va quitter
la piste (décoller) lorsque R,, = 0. On applique alors le PFD & ce dernier dans le
référentiel d’étude galiléen

mRO€y — mRO*C, = (R,, — mgcos(#)) €, + mgsin(0) €y
On en déduit que R,, = mgsin(0) — mRO? = mg cos(d) — mv?/R. 1l convient alors
d’obtenir I'expression de v en fonction de §. On peut pour cela considérer la deuxiéme

équation issue du PFD ou bien un théoréme énergétique (ici, le TEM) sachant que
B, (0) = Ey(A) +mgR(cos(6) — 1)
1
Epm(0) — E(0) =0 = E,, = E,,(0) = E,(A) = imzﬂ = —mgR(cos(f) — 1)

d’ott 'on déduit v? = 2gR(1 — cos())
On peut alors combiner ces résultat pour obtenir

R, = mgcos(0) — 2mg(1 — cos(f))
Et donc au final, R,, = 0 implique

2
cos(fp) =2 — 2cos(fy) = cos(6y) = 3 = 0y ~ 0,84 rad

Il s’agit d’un angle légérement plus élevé que /4. Le point matériel va donc décoller
un peu apres la moitiée de la glissade.

Molécule diatomique (* x %)

Une molécule de molécule de carbone CO est modélisée par deux masses ponctuelles,
my pour 'atome de carbone, et mo pour 'atome d’oxygene. Pour simplifier, on considérera
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ici que 'atome de carbone est fixe dans un référentiel galiléen et que 'atome d’oxygeéne
ne peut subir que des déplacements rectilignes le long de I'axe (Ozx), dirigé par le vecteur
Uy = u,. On néglige la gravitation.

L’énergie potentielle d’interaction des deux atomes est bien représentée par ’équation
empirique de MORSE : V(r) = Vy[1 — e #("=70)]2 oi1 1 est la distance des noyaux des deux
atomes et ou Vjy, 3 et rg sont des constances positives et Srg > 1.

1. Faites l’étude de la fonction V (r) puis tracez la courbe associée en faisant apparaitre
V() et rg.

Réponse :

On remarque que V(0) = Vg (1 — 657"0)2 or Brg > 1 donc V(0) > V.

De plus, on a V(r) — Vp lorsque r — +o0o. Au final, on remarque que V(rg) = 0. On
en déduit le tracé suivant en choisissant

V(r)/Vo

,_.
o
ot
=~
ot

/7o

2. Montrez qu’il existe un domaine de distances ou [’énergie potentielle peut étre modé-

lisée par celle d’un ressort de constante de raideur k que l'on exprimera en fonction
de VO et ,8

Réponse :
Pour r ~ ry, on peut utiliser un développement de TAYLOR-YOUNG de la fonction

V(r):
dVv r—r)? [d2V
s () ()
N . . d
Or, ¢ correspond & un minimum de la fonction V(r), donc <d> = 0.
r

r=TQ

De plus V (rg) = 0.
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2
Calculons <(31:2/> .

dQl =2V, [_ﬁe—ﬁ(r—ro)(l _ e—ﬁ(r—ro)) + e—ﬁ(r—ro)ﬁe—ﬁ(r—ro)
dr2 T=T0o

En r =rg, on a donc

2
(i:;)rm =2VpB[—B x 1 x 0+ B] = 2V 52

On remarque que 'expression est bien homogene compte tenu de la dimension de .
Finalement, pour r = rq,

Vir) =

(2VoB)(r — ro)?

NN

Cette expression correspond bien a l’énergie potentielle élastique d’un ressort de
constante de raideur k = 2V5 32 et de longueur & vide rg.

Pour que cette approximation reste valable, il faut |r — rg| < 7o (il s’agit alors de
"petits" mouvements autour de la position d’équilibre).

3. Dans le cadre de cette approximation, déterminez l’équation différentielle du mouve-
ment de l’atome d’oxygéne et en déduire la pulsation des petites oscillations.

Réponse :
On peut appliquer le TPM & 'atome d’oxygene dans le référentiel 1ié au carbone (donc
fixe et supposé galiléen). La seule force présente dérivant d’une énergie potentielle,

on obtient
dE,, 1
- Phe=0= e im(f’)2 +  V(r) =0= mir+ kr(r—rg) =0

z%k(rfro)z

d? k k . k 2
= <L + —r = —rg Equation de 'OH avecwy = — | =8 Do
dez2  m m m m

Astuces :

’U2
Bl Q2 : Zmax = 3
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E2 Q3 : E, = (212

T 4meg T

E2 Q5 : On trouve d = ze?

TEQMUZ
1
7.+ Blta —t1)
EfQ1: k= 2mg(h—lm)

(lnL_l0)2
E6 Q2 : On doit trouver k = 2V 32
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