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TD 10 | M3- Energétique du point
I II III IV V VI

Réaliser une approximation ✓ ✓
Analyser la cinématique ✓ ✓

Gerer des calculs ✓ ✓ ✓
Faire preuve de sens physique ✓ ✓

Etablir un bilan des actions ✓ ✓ ✓
Etudier un équilibre ✓ ✓

Résoudre une équation différentielle ✓ ✓
Choisir un théorème énergétique ✓ ✓ ✓ ✓

Obtenir une équation différentielle ✓ ✓

I L’énergie et le pendule (⋆)

On considère un pendule simple constitué d’une masse
m accrochée au bout d’un fil de longueur L. Tant que
le fil est tendu, on repère la position de la masse par
l’angle θ représenté sur la figure ci-contre. On néglige les
frottements.
À l’instant initial, θ(t = 0) = 0◦ et on donne au mobile
une vitesse purement orthoradiale de norme v0 telle que
les oscillations restent de faible amplitude. Par choix,
l’origine du repère sera prise à l’intersection de la trajec-
toire de M avec la verticale.
1. Déterminer l’équation différentielle sur la variable θ(t) vérifiée par le pendule, à l’aide

d’une loi portant sur l’énergie. En déduire θ(t).

Réponse :
L’énergie mécanique est la somme de l’énergie cinétique et de l’énergie potentielle de
pesanteur (avec l’axe (Oz) vertical ascendant) :

Em = 1
2mv2 + mgz + cst = 1

2m
(
Lθ̇

)2 + mgL(1 − cos θ) + cst.

Le poids est une force conservative. La tension du fil ne travaille pas car cette force
est toujours orthogonale au vecteur vitesse et au vecteur déplacement élémentaire.
On peut alors appliquer le théorème de la puissance mécanique (TPM) à M dans
Rgal :

dEm

dt
= Pnc = 0 ⇒ mL2θ̇θ̈ + θ̇mgL sin θ = 0,

d’où, en divisant par θ̇,
θ̈ + g

L
sin θ = 0.

Les oscillations sont de faible amplitude donc l’équation précédente peut se linéariser
pour obtenir une équation type oscillateur harmonique.

θ(t) = A cos(ω0t) + B sin(ω0t) avec ω0 =
√

g

L
,

avec les conditions initiales θ(0) = 0 et θ̇(0) = v0/L, on obtient après calcul :

θ(t) = v0

Lω0
sin(ωt) ,

Remarque. Il est aussi possible d’utiliser la loi de l’énergie cinétique ou la loi de la
puissance cinétique pour trouver le même résultat (tant que l’on ne considère qu’un
point matériel, ces trois lois sont équivalentes).

2. Quelle altitude maximale zmax est atteinte par ce pendule. On utilisera pour cela
l’expression de θ(t) obtenue précédemment, dans le cadre de l’approximation des petits
angles.
On rappelle que ∀ε ≪ 1, cos(ε) ≈ 1 − ε2/2

Réponse :
L’altitude est maximale lorsque θ passe par un extremum (lorsque le sinus vaut 1 ou
-1) donc par exemple, pour le maximum de droite, lorsque θ = θm = v0/(Lω0)
L’altitude correspondante s’obtient par étude géométrique :

zmax = L − L cos(θm) = L(1 − cos(θm)) ≈ L
θ2

m

2 = v2
0

2g

3. Déterminer ensuite l’expression de l’altitude maximale zmax atteinte par ce pendule
sans aucune approximation, à l’aide d’un théorème énergétique, et comparer au
résultat précédent.

Réponse :
L’énergie mécanique à l’instant initiale est, en choisissant l’énergie potentielle nulle à
θ = 0 (donc en z = 0) :

Em(initiale) = 1
2mv2

0 .
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L’énergie mécanique lorsque le pendule est le plus haut possible est (l’énergie cinétique
étant alors nulle) :

Em(zmax) = mgzmax,

On applique alors le théorème de l’énergie mécanique entre ces deux états, d’où :

∆Em = Wnc = 0 ⇒ 1
2mv2

0 = mgzmax,

donc

zmax = v2
0

2g
.

Ce résultat correspond bien à celui obtenu précédemment.

II Distance minimale d’approche (⋆)
1. Rappelez l’expression de la force d’interaction coulombienne entre deux charges q1 et

q2 séparées d’une distance r.

Réponse :
TODO

2. Rappelez la relation entre le travail élémentaire d’une force conservative et son énergie
potentielle.

Réponse :
TODO

3. Déterminez l’énergie potentielle électrostatique dont dérive la force d’interaction
coulombienne. On la supposera nulle à l’infini.

Réponse :
Ep = 1

4πϵ0

q1q2
r

Une particule de masse m et de charge +2e est lancée vers un noyau d’atome immobile de
charge +Ze. Elle vient de l’infini avec une vitesse initiale #»v0 comme représentée ci-dessous.

d
v0

t=0, r=∞ 
O

4. Pourquoi la particule ne peut-elle pas percuter le noyau ? Quelle est sa vitesse
lorsqu’elle est au plus proche du noyau ?

Réponse :
TODO

5. Calculez la distance minimale d à laquelle elle peut s’approcher en fonction de Z, e,
m, v0 et ε0.

Réponse :
On trouve d = Ze2

πε0mv2
0

6. Faîtes l’application numérique pour Z = 56 (noyau d’or), m = 6,63 × 10−27 kg, et
1

4πε0
= 9 × 109 S I . puis v0 = 1000 m s−1

Réponse :
TODO

III Résolution d’équations différentielles (⋆)
Trouvez la forme générale des solutions des EDs suivantes en utilisant la méthode

de séparation des variables. On fera apparaître des instants t1 et t2.
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1. dx

dt
+ αx = 0

Réponse :
On récrit cette équation dx

x + αdt = 0
et on intègre chaque termes :

x2∫
x1

dx

x
+

t2∫
t1

αdt = 0 ⇒ ln(|x2/x1|) = −α(t2 − t1)

⇒x2 = ±|x1|e−α(t2−t1) ⇒ x2 = Ae−α(t2−t1)

en posant A = ±|x1|. On retrouve
bien la solution générale de l’équation
différentielle d’ordre 1 à coefficients
constants en prenant t1 = 0 et t2 = t.

2. dθ

dt
+ βθ2 = 0

Réponse :
On récrit cette équation dθ

θ2 = −βdt et
on intègre chaque terme :

θ2∫
θ1

dθ

θ2 = −
t2∫

t1

βdt ⇒ −[ 1
θ2

− 1
θ1

] = −β(t2 − t1) ⇒ θ2 = 1
1
θ1

+ β(t2 − t1)

IV Le Marsupilami (⋆⋆)

Le Marsupilami est un animal de bande dessinée créé par
Franquin aux capacités physiques remarquables, en parti-
culier grâce à sa queue qui possède une force importante.
Pour se déplacer, le Marsupilami enroule sa queue comme
un ressort entre lui et le sol et s’en sert pour se propulser
vers le haut.

On note l0 = 2 m la longueur à vide du ressort équivalent.
Lorsqu’il est complètement comprimé, la longueur du ressort
est lm = 50 cm. La masse m de l’animal est 50 kg et la
queue quitte le sol lorsque le ressort mesure l0. On prendra
g = 10 m/s2.

1. Quelle est la constante de raideur du ressort équivalent si la hauteur maximale d’un
saut est h = 10 m ?

Réponse :
On s’interresse au Marsupilami, de masse m, dans le référentiel lié au sol, et supposé
galiléen. On utilise un repère cartésien (O, #»e z), avec #»e z vers le haut.
Bilan des actions :

— Le poids : Ep,p = mgz

— La force de rappel élastique (tant que l ≥ l0) : Ep,el = (k/2)(l − h)2 avec l = z.
On considère ensuite trois états :

— A : la totalité de l’énergie du Marsupilami (z = lm) se trouve sous forme d’énergie
potentielle élastique et d’énergie potnentielle de pesanteur (vitesse nulle)

— B : la majorité de son énergie se trouve sous forme d’énergie cinétique (au moment
où il décolle, z = l0) (+ une petite partie sous forme d’énergie potentielle de
pesanteur car il est maintenant à une hauteur l0).

— C : la totalité de son énergie se trouve sous forme d’énergie potentielle de
pesanteur (lorsqu’il est à la hauteur z = h). En effet, la vitesse est nulle au plus
haut de la trajectoire, et le ressort n’intervient plus car son extrémité basse est
laissée libre.

On peut alors appliquer le théorème de l’énergie mécanique (TEM) au Marsupilami
entre les états A et B :

∆Em = Wnc = 0 ⇒ 1
2k(lm − l0)2 + mglm = mgh

On en déduit que :

k = 2mg(h − lm)
(lm − l0)2 = 4,1 × 103 N/m .

2. Quelle est sa vitesse v lorsque la queue quitte le sol ?

Réponse :
De même, on applique le TEM entre les états B et C :

∆Em = Wnc = 0 ⇒ v =
√

2g(h − l0) = 12, 5 m/s .

V Glissades (⋆ ⋆ ⋆)
On considère un point matériel M de masse m qui glisse sans frottement de A d’altitude

zA = 0 à B suivant trois trajectoires distinctes :
— soit le long d’un plan incliné d’un angle α par rapport à l’horizontale
— soit le long d’un profil circulaire concave de rayon R = h

— soit le long d’un profil circulaire convexe de rayon R = h
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Dans les trois cas le dénivelé entre le point de départ A et le point d’arrivée B est h. On se
placera dans le référentiel du laboratoire supposé galiléen.

α = 45°

A

B
x′�z

h

A

B
xz

R = h

θ
O A

B
xz

O′�

R = h
θ

Cas 1 Cas 2 Cas 3

1. En supposant que M quitte A sans vitesse, déterminez la vitesse d’arrivée du point
M en B. Cette vitesse dépend-elle du chemin suivi ?

Réponse :
On fait le bilan des forces qui s’exerce sur le point M , dans le référentiel supposé
galiléen lié à la piste, et en repère cartésien :

— Le poids tel que Ep = −mgz (axe dirigé vers le bas !).
— La réaction du support #»

R = #    »

RN , qui ne travaille pas (perpendiculaire au
déplacement)

Le théorème de l’énergie mécanique appliqué à M , entre le point de départ A et le
point d’arrivé B donne :

∆Em = Wnc = 0 ⇒ Ec,A + Ep,A = Ec,B + Ep,B

Or, on a Ec,A = 0 car vA = 0 et Ep,A = −mgzA puis Ep,B = −mgzB . Ainsi,

1
2mv2

B − mgh = 0 ⇒ vB =
√

2gh

La vitesse obtenue en B ne dépend pas du chemin suivi et sera la même pour les
autres profils. En effet, on a pas utilisé d’information liée au profil entre A et B dans
cette démonstration.

2. On s’interresse alors au premier profil (cas 1).

(a) Montrez que la norme de la vitesse v s’exprime en fonction de ż uniquement :
v =

√
2ż.

Réponse :
Il s’agit d’une question purement cinématique :

#»v = vx
#»e x + vz

#»e z = v (cos(α) #»e x + sin(α) #»e z)

or, on a aussi vz = ż d’où l’on déduit par identification ż = sin(α)v ⇒ v =
1

sin(α) ż =
√

2ż.

(b) Intégrez alors l’intégrale première du mouvement (ici, l’énergie mécanique Em)
entre les points A et B puis déterminez le temps t1 mis par le point M pour
parvenir au point B.

Réponse :
L’intégrale première du mouvement s’écrit Ep + Ec = E0.
Initialement, Ec(A) = 0 et Ep(A) = 0. On a donc E0 = 0.
Par ailleurs, on a Ep = −mgz et Ec = 1

2 mv2. L’intégrale première du mouvement
donne alors

mgz − 1
2m(

√
2ż)2 = 0 ⇒ gz − ż2 = 0

Comme z augmente au cours du temps, soit ż > 0, il vient ż = √
gz

On sépare les variables z et t :

dz√
z

= √
gdt

On intègre ensuite entre t = 0 et t = t1, instants qui correspondent à z = 0 et
z = h : ∫ h

0

dz√
z

= √
g

∫ t1

0
dt = √

gdt or
∫ h

0

dz√
z

= [2
√

z]h0 = 2
√

h

Finalement, on obtient t1 = 2

√
h

g

3. Utilisez la même méthode pour déterminer le temps t2 mis par le point M pour
effectuer le trajet AB sur le profil circulaire concave (cas 2). Montrez qu’il s’exprime
sous la forme :

t2 =

√
h

2g

∫ π
2

0

dθ√
sin θ
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Réponse :
Dans cette configuration, l’énergie potentielle s’écrit

Ep = −mgz = −mgh sin θ et l’énergie cinétique Ec = 1
2mv2

avec #      »

OM = h #»e r donc #»v = hθ̇ #»e θ d’ou

Ec = 1
2mh2θ̇2

Ainsi, l’intégrale première du mouvement du système est la suivante :

1
2mh2θ̇2 − mgh sin θ = E0 = 0 ⇒ θ̇2 = 2g

h
sin θ ⇒ θ̇ =

√
2g

h
sin θ ⇒ dθ

dt
=

√
2g

h
sin θ

On sépare les variables t et θ :

dt =

√
h

2g

dθ√
sin θ

Pour déterminer t2 il suffit alors d’intégrer entre t = 0 et t = t2, instants qui
correspondent respectivement à θ = 0 et θ = π

2 . On a donc finalement

t2 =
∫ t2

0
dt =

√
h

2g

∫ π
2

0

dθ√
sin θ

4. On donne
∫ π

2
0

dθ√
sin θ

≈ 2, 62. Comparez les distances parcourues et les temps de
parcourt pour les deux trajets. Commentez.

Réponse :

On a t1 = 2

√
h

g

et t2 ≈ 2, 62
√

h
2g ≈ 2,62√

2

√
h
g =≈ 2,62

1,41

√
h
g ⇒ t2 ≈ 1, 85

√
h

g
.

Ainsi, le temps t2 est plus court que le temps t1 bien que le chemin soit plus long
(πh/2 pour le deuxième cas et h

√
2 pour le premier). La vitesse moyenne sur le trajet

2 est donc plus importante.

5. Pour le cas 3, montrer qu’il existe un angle θ0 ∈]0, π/2[ à partir duquel le point
matériel M va quitter la piste.

Réponse :
On effectue alors le bilan des forces en base polaire :

— Le poids : #»

P = −mg(cos(θ) #»e r − sin(θ) #»e θ)
— La réaction normale du support : #»

Rn = Rn
#»e r avec Rn > 0 sinon le mobile

quitte la piste.
L’accélération s’exprime en base polaire : #»a = Rθ̈ #»e θ − Rθ̇2 #»e r. Le mobile va quitter
la piste (décoller) lorsque Rn = 0. On applique alors le PFD à ce dernier dans le
référentiel d’étude galiléen

mRθ̈ #»e θ − mRθ̇2 #»e r = (Rn − mg cos(θ)) #»e r + mg sin(θ) #»e θ

On en déduit que Rn = mg sin(θ) − mRθ̇2 = mg cos(θ) − mv2/R. Il convient alors
d’obtenir l’expression de v en fonction de θ. On peut pour cela considérer la deuxième
équation issue du PFD ou bien un théorème énergétique (ici, le TEM) sachant que
Ep(θ) = Ep(A) + mgR(cos(θ) − 1)

Em(θ) − Em(0) = 0 ⇒ Em = Em(0) = Ep(A) ⇒ 1
2mv2 = −mgR(cos(θ) − 1)

d’où l’on déduit v2 = 2gR(1 − cos(θ))
On peut alors combiner ces résultat pour obtenir

Rn = mg cos(θ) − 2mg(1 − cos(θ))

Et donc au final, Rn = 0 implique

cos(θ0) = 2 − 2 cos(θ0) ⇒ cos(θ0) = 2
3 ⇒ θ0 ≈ 0,84 rad

Il s’agit d’un angle légèrement plus élevé que π/4. Le point matériel va donc décoller
un peu après la moitiée de la glissade.

VI Molécule diatomique (⋆ ⋆ ⋆)
Une molécule de molécule de carbone CO est modélisée par deux masses ponctuelles,

m1 pour l’atome de carbone, et m2 pour l’atome d’oxygène. Pour simplifier, on considérera
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ici que l’atome de carbone est fixe dans un référentiel galiléen et que l’atome d’oxygène
ne peut subir que des déplacements rectilignes le long de l’axe (Ox), dirigé par le vecteur
# »ux = # »ur. On néglige la gravitation.

L’énergie potentielle d’interaction des deux atomes est bien représentée par l’équation
empirique de Morse : V (r) = V0[1 − e−β(r−r0)]2 où r est la distance des noyaux des deux
atomes et où V0, β et r0 sont des constances positives et βr0 ≫ 1.

1. Faîtes l’étude de la fonction V (r) puis tracez la courbe associée en faisant apparaître
V0 et r0.

Réponse :
On remarque que V (0) = V0

(
1 − eβr0

)2 or βr0 ≫ 1 donc V (0) ≫ V0.
De plus, on a V (r) → V0 lorsque r → +∞. Au final, on remarque que V (r0) = 0. On
en déduit le tracé suivant en choisissant

<latexit sha1_base64="6i6RMzmfjnuHch9q2cOXlfPbe3A="></latexit>

1 2 3 4 5

1

2

3

4

r/r0

V
(r

)/
V

0

2. Montrez qu’il existe un domaine de distances où l’énergie potentielle peut être modé-
lisée par celle d’un ressort de constante de raideur k que l’on exprimera en fonction
de V0 et β.

Réponse :
Pour r ≈ r0, on peut utiliser un développement de Taylor-Young de la fonction
V (r) :

V (r) ≈ V (r0) + (r − r0)
(

dV

dr

)
r=r0

+ (r − r0)2

2

(
d2V

dr2

)
r=r0

Or, r0 correspond à un minimum de la fonction V (r), donc
(

dV

dr

)
r=r0

= 0.

De plus V (r0) = 0.

Calculons
(

d2V

dr2

)
r=r0(

d2V

dr2

)
r=r0

= 2V0β
[
−βe−β(r−r0)(1 − e−β(r−r0)) + e−β(r−r0)βe−β(r−r0)

]
En r = r0, on a donc(

d2V

dr2

)
r=r0

= 2V0β[−β × 1 × 0 + β] = 2V0β2

On remarque que l’expression est bien homogène compte tenu de la dimension de β.
Finalement, pour r ≈ r0,

V (r) ≈ 1
2(2V0β2)(r − r0)2

Cette expression correspond bien à l’énergie potentielle élastique d’un ressort de
constante de raideur k = 2V0β2 et de longueur à vide r0.
Pour que cette approximation reste valable, il faut |r − r0| ≪ r0 (il s’agit alors de
"petits" mouvements autour de la position d’équilibre).

3. Dans le cadre de cette approximation, déterminez l’équation différentielle du mouve-
ment de l’atome d’oxygène et en déduire la pulsation des petites oscillations.

Réponse :
On peut appliquer le TPM à l’atome d’oxygène dans le référentiel lié au carbone (donc
fixe et supposé galiléen). La seule force présente dérivant d’une énergie potentielle,
on obtient

dEm

dt
= Pnc = 0 ⇒ d

dt

1
2m(ṙ)2 + V (r)︸︷︷︸

≈ 1
2 k(r−r0)2

 = 0 ⇒ mr̈ṙ + kṙ(r − r0) = 0

⇒ d2r

dt2 + k

m
r = k

m
r0 Équation de l’OH avecω0 =

√(
k

m

)
= β

√(
2V0

m

)

Astuces :

E1 Q2 : zmax = v2
0

2g
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E2 Q3 : Ep = 1
4πϵ0

q1q2
r

E2 Q5 : On trouve d = Ze2

πε0mv2
0

E3 Q2 : θ2 = 1
1
θ1

+ β(t2 − t1)
E4 Q1 : k = 2mg(h−lm)

(lm−l0)2

E6 Q2 : On doit trouver k = 2V0β2
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