
TD 09 | M2 2025/2026 Dynamique du point

TD 09 | M2- Dynamique du point
I II III IV V VI VII

Réaliser une approximation ✓ ✓
Gerer des calculs ✓ ✓ ✓

Analyser la cinématique ✓
Prendre en compte les frottements ✓ ✓ ✓

Faire preuve de sens physique ✓ ✓ ✓
Analyser un schéma ✓ ✓ ✓

Etablir un bilan des actions ✓ ✓ ✓ ✓ ✓ ✓ ✓
Etudier un équilibre ✓ ✓

Résoudre une équation différentielle ✓ ✓ ✓
Mettre en équations un problème abstrait ✓ ✓

Obtenir une équation différentielle ✓ ✓ ✓ ✓

I Étude d’un pendule simple (⋆)

On considère un pendule simple constitué d’une masse m accrochée au
bout d’un fil de longueur L. Tant que le fil est tendu, on repère la position
de la masse par l’angle θ représenté sur la figure ci-contre.

On néglige les frottements. À l’instant initial, θ(0) = 0° et on donne au
mobile une vitesse de norme v0.

1. Déterminer les caractéristiques du vecteur accélération en fonction des données tant
que le fil est tendu.

Réponse :
On se place en coordonnées polaires. On a alors

#»r = L #»u r ; #»v = Lθ̇ #»u θ ; #»a = Lθ̈ #»u θ − Lθ̇2 #»u r

2. Trouver l’équation différentielle vérifiée par θ(t).

Réponse :
Bilan des forces qui s’appliquent sur la masse :

— poids #»

P = −mg #»u z = −mg[− cos(θ) #»u r + sin(θ) #»u θ]
— tension du fil #»

T = −T #»u r

On applique la loi de la quantité de mouvement sur la masse m dans le référentiel
supposé galiléen du laboratoire :

#»

P + #»

T = m #»a .

On projette selon #»u r et #»u θ et on divise par m :

−T/m + g cos(θ) = −Lθ̇2 ; −g sin(θ) = Lθ̈

On trouve ainsi :

θ̈ + ω2
0 sin(θ) = 0 ; ω0 =

√
g

L
.

3. Que devient cette équation pour des oscillations de faibles amplitudes ? Pour quel
autre système avons-nous rencontré la même équation ?

Réponse :
Pour de faibles oscillations, typiquement θ < 20 ◦, alors sin(θ) ≈ θ et l’équation
différentielle devient celle de l’oscillateur harmonique :

θ̈ + ω0
2θ = 0 .

4. Résoudre cette équation pour des oscillations de faibles amplitudes.

Réponse :
Les solutions sont de la forme :

θ(t) = A cos(ω0t) + B sin(ω0t).

Les conditions initiales sont :

θ(0) = 0 ; v(0) = v0 = Lθ̇(0).

On trouve alors
θ(t) = v0

Lω0
sin(ω0t) .

II Mobile sur un plan Incliné (⋆)
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Un solide supposé ponctuel de masse m est
déposé à l’extrémité supérieure d’un plan incliné
d’angle α, sans vitesse initiale. On note H la
hauteur de ce point initial O et g l’accélération
de la pesanteur.

II.1 Absence de Frottement
1. Déterminez l’accélération a = ẍ du mobile

à l’instant t en absence de frottement.

Réponse :
Système {solide} supposé ponctuel dans le référentiel terrestre galiléen.
Repère {O, # »ux, # »uy, # »uz} orthonormé direct selon schéma.
Forces :
Poids #»

P = −mg cos(α) # »uy + mg sin(α) # »ux Réaction normale #»

R = #    »

RN = RN
# »uy car

absence de frottements.
RFD : m #»a = #»

P + #»

R
Soit en projection sur :
# »ux : mẍ = mg sin(α)
# »uy : mÿ = 0 = RN − mg cos(α)
soit ẍ = g sin(α)

2. En déduire la vitesse v = ẋ(t) et la position x(t) et déterminer la vitesse du mobile
lorsqu’il arrive au point A.

Réponse :
#»v = ẋ # »ux soit par intégration : ẋ = g sin(α)t car v(t = 0) = 0.

À nouveau par intégration : x = 1
2 g sin(α)t2 car x(t = 0) = 0.

Au point A : xA = H
sin(α) donc tA =

√
2H

g(sin(α))2

soit vA = ẋA = g sin(α)tA =
√

2gH

Vérification avec le théorème de l’énergie mécanique : Ec(A)+Ep(A) = Ec(O)+Ep(O)
soit 1

2 mv2
A + 0 = 0 + mgzA = mgH soit le même résultat.

II.2 Existence de frottements solides (⋆⋆)
Dans cette partie, on ajoute uniquement la prise de compte d’une force de frottement

solide dont les coefficients de frottement statiques et dynamiques sont notés f0 et f
respectivement.

3. A quelle condition sur le coefficient f0 de frottement statique le solide commence-t-il
à glisser à t = 0 ?

Réponse :
En statique, on a #»

P + #»

R = #»0 soit en projection :
RT = mg sin(αs) et RN = mg cos(αs). Les lois de Coulomb nous donnent un lien
entre RT et RN en statique soit :
RT ≤ f0RN qui s’écrit ici tan(αs) ≤ f0 .

On aura donc glissement si cette condition n’est pas vérifiée soit f0 < tan(αs) .

4. On note f le coefficient de frottement dynamique. Quelle relation existe-t-il entre RT

et RN et f lorsque le mobile se met en mouvement ? Reprendre ensuite la question 2

Réponse :
On reprend les équations de la première partie en ajoutant les frottements solides.
On arrive en projection à :
# »ux : ẍ = g (sin(α) − f cos(α))
# »uy : 0 = RN − mg cos(α) identique
Par intégration : ẋ = g (sin(α) − f cos(α)) t car v(t = 0) = 0.

À nouveau par intégration : x = 1
2 g (sin(α) − f cos(α)) t2 car x(t = 0) = 0.

Au point A : xA = H
sin(α) donc tA =

√
2H

g sin(α))(sin(α)−f cos(α))

soit vA = ẋA =
√

2gH
(

1 − f
tan(α)

)

III Vitesse de chute libre (⋆⋆)
Une goutte d’eau sphérique de rayon a, indéformable et de masse volumique ρ tombe

dans le champ de pesanteur uniforme #»g suivant un axe vertical Oz dirigé vers le haut.
L’atmosphère exerce sur la goutte une force dite de trainée, opposée à la vitesse, et qui
s’exprime par la relation

#»

F = −6πη
a #»v

1 + l/a
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où η = 1,7 × 10−5 N s m2 est la viscosité de l’air et l = 0,07 µm une longueur caractéris-
tique. On négligera la poussée d’Archimède.

1. Exprimez la vitesse limite de chute de la goutte que l’on notera #»v l.

Réponse :
On se place dans un référentiel terrestre supposé galiléen et on considère le système :
"Goutte d’eau". Bilan des forces :

P = −mg #»e z et #»

F = −α #»v

La goutte va atteindre une vitesse limite lorsqu’elle sera pseudo-isolée (accélération
nulle), c’est à dire lorsque (d’après la première loi de Newton en référentiel galiléen) :

#»

P + #»

F = #»0

On en déduit :

−mg #»e z − α #»v l = #»0 ⇒ #»v l = −mg

α
#»e z = −mg (1 + l/a)

6πηa
#»e z

2. Donnez ensuite l’expression du temps caractéristique τ mis pour atteindre cette vitesse
limite, ainsi que l’ordre de grandeur de la distance D parcourue pendant cette durée.

Réponse :
On obtient le temps caractéristique τ à l’aide du PFD :

d #»v

dt
+ 6πηa

m(1 + l/a)︸ ︷︷ ︸
1/τ

#»v = −g #»e z

Soit τ = m(1+l/a)
6πηa par identification. L’ordre de grandeur de la distance parcourue

est, en première approximation,

D = τ × vl

Remarque : Cette estimation est discutable puisqu’elle ne tient pas compte du fait que
la goutte accélère durant cette phase, τ étant précisément la durée durant laquelle
la goutte accélère. Néanmoins, ce semble être l’esprit de l’énoncé de faire cette
approximation, puisqu’il n’est pas demandé de résoudre explicitement l’équation
différentielle.

3. On donne ρ = 1,0 × 103 kg m−3. Calculez vl, τ et D pour a1 = 0,01 mm et pour
a2 = 0,1 mm.

Réponse :
On a m = ρ 4

3 πa3 = 4,2 × 10−12 kg pour la première goutte et on en déduit vl =
1,3 × 10−3 m s−1 puis τ = 1,3 × 10−4 s.

Pour la deuxième goutte, on a m = 4,2 × 10−9 kg puis vl = 1,3 × 10−1 m s−1 et
finalement τ = 1,3 × 10−2 s.

4. L’atmosphère est modélisé par une couche uniforme de hauteur h = 8 km. En utilisant
les résultats précédents, calculez le temps de transit de gouttes d’eau partant du haut
de l’atmosphère et de rayons respectifs a1 et a2. Peut-on supposer la vitesse de chute
constante dans ces deux cas ?

Réponse :
Dans les deux cas, on a D ≪ h, on pourra donc supposer la vitesse constante et en
déduire la durée de la chute simplement en utilisant, pour chacune des deux gouttes

ttransit = h

vl

On trouve ttransit = 71 jours pour la première goutte et ttransit = 17 h pour la seconde.
La vitesse de chute de la première goutte est si lente qu’il est possible de négliger sa
chute.

IV Équilibre éléctro-statique (⋆⋆)

Un pendule est constitué d’une petite sphère S, de
masse m = 45 g, attachée au bout d’un fil idéal de lon-
gueur l. On impose à cette sphère une charge électrique
positive q que l’on souhaite déterminer.

D’autre part, une autre sphère chargée avec une charge
opposée −q est placée au voisinage du pendule : celui-ci
s’écarte alors de la verticale d’un angle θ. On supposera
que les 2 sphères sont à la même hauteur.

d

S
-q

(m,q)

lϴ

x

y

O
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1. On mesure les valeurs suivantes : θ = 36° et d = 22 cm. La permittivité électrique de
l’air est pratiquement égale à celle du vide : ε0 = 8,85 × 10−12 F m−1. Que vaut la
valeur de la charge q ?

Réponse :
Il convient premièrement d’effectuer un bilan des forces appliquées à la sphère S
dans le référentiel d’étude supposé Galiléen : #»

P = mg cos θ #»e r − mg sin(θ) #»e θ, #»

F E =
FE sin(θ) #»e r + FE cos(θ) #»e θ puis #»

T = −T #»e r, avec FE = 1
4πϵ0

q2

d2 (force électrostatique
dirigée vers #»e x)
Le système est à l’équilibre si #»

P + #»

T + #»

F E = #»0 (première loi de Newton). A l’inverse,
la relation obtenue selon #»e r comporte deux inconnues (dont T ). La relation obtenue
selon #»e θ permet d’aboutir au résultat :

−mg sin(θ) + 1
4πϵ0

q2

d2 cos(θ) = 0 ⇒ tan(θ) = 1
4πϵ0

q2

mgd2 ⇒ q =
√

4πϵ0mgd2 tan(θ)

Cela correspond à une charge de q ≈ 1,31 × 10−6 C

V trajectoire d’un projectile (⋆⋆)
Reprendre l’application du cours sur la chute libre (avec #»v (0) = #»v 0 = v0 cos(θ) #»e y +

v0 sin(θ) #»e z) en prenant en compte cette fois l’existence de frottements fluides du type
#»

F f = −α #»v .
1. Obtenir les équations horaire y(t) et z(t) en prenant comme origine du repère la

position initiale du projectile.

Réponse :
On obtient après calcul :

y(t) = τv0 cos(θ)
(

1 − e−t/τ
)

z(t) = −gτt + τ(v0 sin(θ) + gτ)
(

1 − e− t
τ

)

2. En prenant v0 = 20 m s−1, g = 10 m s−2, α = 0,4 kg m−1 s−1 et m = 200 g, tracez
la trajectoire z(y) décrite par le projectile à l’aide d’un programme écrit en python
pour θ = π/4. On stoppera le tracé lorsque le projectile retouchera le sol. Ici, on ne
cherchera pas à obtenir l’équation formelle de Z(y).

Réponse :
On obtient la figure suivante (avec aussi les résultats pour d’autres angles).

0 1 2 3 4 5 6 7 8
x (m)

0

1

2

3

4

5

z (
m

)

trajectoire Q6
pi/4
pi/3
pi/6

3. Toujours à l’aide d’un programme écrit en python, cherchez pour quel angle initial
θmax la portée du tir est maximale.

Réponse :
Il faut écrire une fonction donnant la portée du tir en fonction de θ. Pour cela on
peut utiliser une dichotomie pour chercher tc lors z s’annule une seconde fois puis
calculer y(tc)
On pourra ensuite chercher le maximum de cette fonction par rapport à θ

On obtient ainsi θmax = 0,419 rad et correspond à ce qui est observé sur le graphique
précédant. En absence de frottement, on avait obtenu θ′

max = π
4 ≈ 0, 78. Cette

solution est donc différente

VI Pendule conique (⋆ ⋆ ⋆)

Un point matériel M , de masse m, lié par un fil
inextensible de longueur l à un point fixe A et
tourne avec une vitesse angulaire constante ω = θ̇
autour de l’axe Az.

Soit α l’angle que forme AM avec la verticale (c.f.
schéma ci-contre).

O
y

z

x

l

A

M

↵

✓

~g
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1. Exprimez l’angle α et la tension du fil T en fonction de m, g, l et ω avec l’hypothèse
lω2 > g. On supposera dans cette question uniquement que α ̸= 0.

Réponse :

— Système : {M}
— Référentiel : Le référentiel lié au support fixe supposé Galiléen
— Base de projection : la base cylindrique (O, #»e r, #»e θ, #»e z) avec O définit sur le

schéma (mouvement tournant)
— Bilan des forces :

— Le poids : #»

P = −mg #»e z

— La tension du fil : #»

T = T (− sin(α) #»e r + cos(α) #»e z)
— Application du principe fondamental de la dynamique (PFD) :

m #»a = #»

P + #»

T (1)

m

(
(d2r

dt2 − r

(
dθ

dt

)2
) #»e r + 2dr

dt

dθ

dt
#»e θ + d2z

dt2
#»e z

)
= − mg #»e z − T (sin(α) #»e r + cos(α) #»e z)

(2)

Cette relation vectorielle permet d’obtenir trois équations scalaires. On cherche à
exprimer α et T . On peut donc résoudre !

Projection sur #»e θ :

2m
dr

dt

dθ

dt
= 0

On en déduit dr

dt
= 0 : La distance à l’axe ne varie pas dans ce cas. ( conséquence

de ω = Cste ). On en déduit aussi d2r

dt2 = 0 et z = Cste ( application du Th de
Pythagore dans le triangle AOM)

Projection sur #»e r :

mrω2 = T sin(α) (3)

Projection sur #»e z :

m
d2z

dt2 = 0 = −mg + T cos(α) ⇒ mg = T cos(α) (4)

Les deux dernières equations dépendant à la fois de α et T . On peut donc les combiner
pour isoler ces deux paramètres sachant que sin(α) = r/l

(3)/(4) ⇒ rω2

g
= tan(α) ⇒ l

ω2

g
sin(α) = tan(α) ⇒ g

lω2 = cos(α) ou α = 0 (5)

On a bien g/(lω2) < 1 donc cette équation admet une solution non triviale α =
acos(g/(lω2)). Pour la tension, on obtient dans le cas non trivial :

(3) ⇒ T = mlω2 (6)

Il existe aussi une autre solution : α = 0. Cette dernière est d’ailleurs la seule solution
envisageable lorsque g/(lω2) > 1 et donc le point matériel reste à la verticale.

2. Qu’est ce qui se passe lorsque lω2 < g.

Réponse :
Cette fois, la solution non triviale disparait et il ne reste plus que le cas α = 0
(pendule vertical). On ne peut plus déduire la valeur de T d’après l’équation 3. A
l’inverse, l’équation 4 donne T = mg (ce qui est attendu pour un pendule vertical).

VII Trois petits problèmes ouverts (⋆ ⋆ ⋆)
1. Un objet lancé verticalement vers le haut passe par la même altitude h (hauteur repérée

par rapport à l’origine O du repère) aux instants t1 = 2 s et t2 = 10 s. Déterminer h.

Réponse :
Appliquons le PFD au point matériel M assimilé à l’objet dans le référentiel terrestre
supposé galiléen. On se place dans un repère cartésien 1D avec #»ez orienté selon la
verticale ascendante. Une fois lancée, en supposant l’absence de frottement, seul le
poids s’exerce sur l’objet. Ainsi, en projection sur #»ez :

mz̈ = −mg

En intégrant deux fois successivement, et en notant α1 et α2 les constantes d’intégra-
tion :

z(t) = −1
2gt2 + α1t + α2

Soit, avec les conditions initiales z(0) = 0 et ż(0) = v0,

z(t) = −1
2gt2 + v0t
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On cherche à déterminer h qui est solution du système de deux équations :

z(t1) = h et z(t2) = h

Soit encore z(t1) = z(t2). Ainsi, il vient

−1
2gt1

2 + v0t1 = −1
2gt2

2 + v0t2

D’où v0 = g(t1
2−t2

2)
2(t1−t2) = 60 m s−1

Il ne reste qu’à déterminer h, par exemple en = t1 :

h = −1
2gt1

2 + v0t1 = 100 m

2. Tous les êtres humains vivant sur la Terre se regroupent au même endroit et sautent
au même moment. Déterminer le déplacement subit par la Terre durant le saut. On
suppose l’ensemble immobile (pas d’action du Soleil ou de la Lune notamment).

Réponse :
Le système {Terre+humain} est isolé (aucune force extérieure ne s’exerce sur le
système). Il est donc possible d’appliquer le PFD sur la Terre puis sur les humains
(pris comme un unique point matériel) dans un référentiel supposé galiléen (le
référentiel lié au barycentre du système serait adapté, mais sa maîtrise n’est pas au
programme). Il vient, en notant H pour humains et T pour Terre :

mT
# »aT + mH

#  »aH = #»0

On intègre une première fois, la vitesse initiale étant nulle :

# »vT = −mH

mT

#  »vH

On intègre une seconde fois, la position initiale des deux corps étant supposée nulle
(en les assimilant à des points matériels initialement confondus. En pratique, c’est
inexact mais ça ne changerait rien au résultat final puisque seul le déplacement nous
intéresse et pas la position.) :

#         »

OMT = −mH

mT

#          »

OMH

En sautant, les humains modifient leur position de
∥∥∥ #          »

OMH

∥∥∥ = 1 m (hauteur d’un
saut). La population humaine est de 7 milliards avec une masse estimée à 70 kg, il
vient

mH = 5 × 1011 kg

Si la masse de la Terre n’est pas connue, on peut l’estimer à partir de sa masse
volumique (qui est typiquement celle d’un métal). En prenant RT = 6300 km et
ρT = 5000 kg m−3, il vient

mT = ρT × 4
3πRT

3 = 5,2 × 1024 kg

Ce qui est, au passage une très bonne estimation de la masse réelle de la Terre.
Finalement, on trouve :∥∥∥ #         »

OMT

∥∥∥ = mH

mT

∥∥∥ #          »

OMH

∥∥∥ = 9,5 × 10−14 m

C’est une distance inférieure à la taille d’un atome ! Il est bien difficile de déplacer la
Terre !

3. Le champ de gravitation à la surface de la Lune est de # »gL = 1,6 m s−2. Déterminer
la hauteur maximale à laquelle vous seriez capable de sauter sur la Lune.

Réponse :
Une fois que nos pieds ont quitté le sol, la seule force qui s’exerce sur nous (en
supposant les frottements absents) est la force de l’interaction gravitationnelle de la
Terre ou de la Lune. Appliquons dans chacun des deux cas le PFD sur un humain
dans un référentiel galiléen adapté (référentiel terrestre ou lunaire selon). On obtient,
après intégration en supposant une vitesse initiale v0 dirigée vers le haut :

vz(t) = −gt + v0 et z(t) = −1
2gt2 + v0t

Soit tm l’instant auquel la hauteur maximale est atteinte. On a alors v(tm) = 0
(rebroussement), soit tm = v0/g. En réinjectant l’expression de tm dans z(t), on
obtient la hauteur maximale atteinte zmax.

zmax = z(tm) = v0
2

2g

zmax est donc inversement proportionnel à g. Toutes choses égales par ailleurs,
gT ≈ 6gL. On pourra donc sauter à une altitude six fois supérieure sur la Lune (ce
qui facilitait fortement les déplacements des astronautes en mission lunaire malgré la
lourdeur de leurs équipements).
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Astuces :

E2 Q4 : on trouve vA,frottsol =
√

2gH(1 − f
tanα )

E3 Q3 : vl ≈ 1,3 × 10−3 m s−1 et τ ≈ 1,3 × 10−4 s
E4 Q1 : On trouve q ≈ 1,31 × 10−6 C
E5 Q3 : Numériquement, on trouve θmax = 0,419 rad
E6 Q1 : α = acos(g/(lω2))
E7 Q1 : h ≈ 100 m
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