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TD 07 | E3- Régimes transitoires du 2nd ordre
I II III IV V VI

Etudier un régime permanent ✓ ✓ ✓
Gerer des calculs ✓ ✓ ✓

Tracer un régime transitoire ✓ ✓
Faire preuve de sens physique ✓

Maitriser plusieurs mailles ✓ ✓
Etudier des conditions initiales ✓ ✓ ✓

Réaliser un bilan d’énergie ✓ ✓
Résoudre une équation différentielle ✓ ✓ ✓ ✓ ✓ ✓

Obtenir une équation différentielle ✓ ✓ ✓ ✓ ✓

I Résolution d’équation différentielles harmoniques (⋆)
On cherche à résoudre les équations différentielles suivantes. Pour chaque cas, il faut

établir la solution générale de l’équation homogène, trouver une solution particulière (en
présence d’un second membre) puis enfin appliquer les conditions initiales.

Pensez à reformuler les EDs sous la forme canonique avant de les résoudre et a vérifier
que vos solutions sont bien homogènes.

1. z̈ + ω2
0z = 0 avec z(0) = z0 et ż(0) = 0

Réponse :
La solution de l’équation homogène peut se mettre sous la forme zH(t) = A cos(ω0t)+
B sin(ω0t). De plus, le second membre étant nul, la solution particulière est triviale :
zp = 0. On peut donc appliquer les CIs à l’ensemble z(t) = zH(t) + zp(t) : A = z0 et
Bω0 = 0 soit au final z(t) = z0 cos(ω0t)

2. z̈ + ω2
0z = 0 avec z(0) = 0 et ż(0) = v0

Réponse :
Il s’agit de la même équation qu’à la question précédente, seules les CIs changent.
Leurs prise en compte donne A = 0 et Bω0 = v0 soit au final z(t) = v0

ω0
sin(ω0t).

3. mÿ + k(y − l0) = mg avec y(0) = l0 et ẏ(0) = 0

Réponse :
On ré-écrit premièrement cette équation sous sa forme canonique ÿ +ω2

0y = (ω2
0l0 +g)

avec ω2
0 = k/m. On retrouve la même solution de l’équation homogène que dans les

exemples précédents puis yp = l0+g/ω2
0 . L’application des CIs donne A+l0+g/ω2

0 = l0
soit A = −g/ω2

0 puis ω0B = 0 soit au final y(t) = l0 − g
ω2

0
(1 − cos(ω0t))

4. mẍ + kx = kl0 avec x(0) = l0 et ẋ(0) = v0

Réponse :
Pour ce dernier exemple, on obtient comme solution générale x(t) = A cos(ω0t) +
B sin(ω0t) + l0. Par application des CIs, on obtient A + l0 = l0 ⇒ A = 0 et Bω0 = v0
soit au final x(t) = v0

ω0
sin(ω0t) + l0

II Autour du cours (⋆)
1. Établire l’équation de l’oscillateur mécanique amorti (horizontal) en considérant un

ressort de raideur k et longueur à vide l0, une force de frottement fluide #»

F = −λ #»v
et un mobile de masse m

Réponse :
d2x

dt2 + λ

m

dx

dt
+ k

m
x = k

m
l0

2. Mettre cette équation sous forme canonique. Commenter l’allure des solutions selon
les différents cas possibles.

Réponse :
d2x

dt2 + ω0

Q

dx

dt
+ ω2

0x = ω2
0l0. On obtient par identification ω0 =

√
k/m puis Q =

ω0m/λ =
√

mk/λ. Pour Q > 1/2, on obtient un régime pseudo périodique ; pour
Q = 1/2, un régime critique et pour Q < 1/2, un régime apériodique.

3. On suppose que l’on se trouve dans le régime apériodique. Résoudre cette équation
sachant que le mobile est initialement à sa position d’équilibre avec une vitesse initiale
v(0) = v0.

Réponse :
On a Q < 1/2 donc

x(t) = Ae−t/τ1 + Be−t/τ2 + l0 avec (A, B) ∈ R2
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On a x(0) = 0 ⇒ A + B = 0 puis ẋ(0) = v0 ⇒ A
τ1

+ B
τ2

= −v0 ⇒ A = v0
τ1τ2

τ1−τ2

On en déduit finalement

x(t) = v0
τ1τ2

τ1 − τ2

(
e−t/τ1 − e−tτ2

)

4. Tracer la solution correspondante

Réponse :
On doit obtenir une courbe compatible avec les CIs à savoir : x(0) = 0, dx/dt(0) =
v0 ̸= 0, un régime stationnaire (asymptote horizontale) nul, des valeurs non nulles au
milieu et pas d’oscillations. A vous d’essayer !

III Oscillations verticales (⋆⋆)

Un ressort de longueur à vide l0 et de raideur k est fixé au
plafond en un point O. A son autre extrémité est attaché un
mobile M de masse m, repéré par son abscisse z. L’axe (Oz)
est dirigé vers le bas.
De plus, les frottements seront négligés dans le cadre du modèle
étudié.

O

M(m)
z1. Déterminez l’équation du mouvement du point M .

Réponse :
On obtient après calculs

z̈ + ω2
0z = g + ω2

0l0

2. Quelle est la position d’équilibre zeq ? Commentez en faisant appel à votre sens
physique.

Réponse :
A l’équilibre, l’accélération est nulle et on obtient zeq = l0 + g/ω2

0 = l0 + mg/k Ainsi,
lorsque la masse augmente, la longueur d’équilibre du ressort augmente ce qui semble
convainquant.

3. Quelle est la période des oscillations ?

Réponse :
On obtient simplement T = 1/f = 2π

ω0
= 2π

√
k
m

4. Résolvez l’équation sachant qu’initialement, le point M est étiré de la distance a par
rapport à zeq (vers le bas) et lâché sans vitesse initiale.

Réponse :
La solution de l’équation obtenue à la question 1 est de la forme

z(t) = A cos(ω0t) + B sin(ω0t) + zeq

avec A et B, deux constantes à determiner à l’aide des conditions initiales. A t = 0, on
a z(0) = a+zeq = A+zeq d’où l’on déduit A = a. De plus on a aussi vz(0) = 0 = Bω0.
On obtient au final

z(t) = zeq + a cos(ω0t)

5. En déduire l’expression de la vitesse ż(t) du mobile en fonction du temps.

Réponse :
On a ż = −aω0 sin(ω0t)

6. (⋆⋆⋆)Vérifiez que l’énergie mécanique se conserve. On rappelle que l’énergie potentielle
de pesanteur s’écrit Ep,p = −mgz si l’axe Oz est vers le bas et que l’énergie potentielle
elastique s’exprime selon Ep,l = 1

2 k(l − l0)2 avec l, sa longueur instantanée.

Réponse :
Après de longs calculs, on peut montrer que

Em = 1
2ka2 − 1

2k
g2

ω4
0

− mgl0

L’énergie mécanique est donc bien constante
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7. Facultatif, mais important : On note u(t) = z(t) − zeq, c’est-à-dire l’écart par rapport
à la position d’équilibre. Déterminer l’équation différentielle vérifiée par u(t) à partir
de l’équation obtenue à la question 1

Réponse :
On obtient l’équation suivante

ü + ω2
0u = 0

après un changement de variable.

IV Réponse d’un circuit RLC série (⋆)

Un circuit électrique est composé d’une résistance
R, d’une bobine idéale d’inductance L et d’un
condensateur de capacité C. Ces dipôles sont
disposés en série et on soumet le circuit à un
échelon de tension U(t) de hauteur E tel que :

U(t) =
{

0 pourt < 0
E pourt ≥ 0

On pose γ = R
2L et ω0 = 1√

LC
.

1. Déterminez les valeurs de i et q à t = 0−.

Réponse :
i(0−) = 0 et q(0−) = 0

2. Établissez l’équation différentielle vérifiée par la charge q(t) du condensateur pour
t > 0.

Réponse :

d2q

dt2 + 2γ
dq

dt
+ ω2

0q = ω2
0CE

3. Précisez, en les justifiant soigneusement, les valeurs initiales de la charge q(0+) et de
sa dérivée. dq

dt
(0+).

Réponse :
q(t = 0+) = q(t = 0−) = 0 et dq

dt
(t = 0+) = i(t = 0+) = i(t = 0−) = 0

4. Prévoyez l’état final du circuit en précisant les valeurs de q(+∞) et i(+∞).
Le circuit présente différents régimes suivant les valeurs de R, L et C. On suppose,
dans la suite, la condition ω0 > γ réalisée.

Réponse :
On remplace la bobine et le condensateur par leur modèles équivalent et on obtient
i(+∞) = 0 et q(+∞) = CE.

5. Montrez que l’expression de la charge pour t > 0 peut se mettre sous la forme

q(t) = (A cos ωt + B sin ωt)e−γt + D

où on déterminera ω, A, B et D en fonction de C, E, ω0 et γ.

Réponse :
L’équation vérifiée par q(t) est une équation différentielle linéaire d’ordre 2 à coef-
ficients constants avec second membre. La forme générale de la solution est donc
q(t) = q0(t) + qp(t) (particulière + homogène)
On commence par résoudre l’équation homogène ayant pour équation caractéristique :
r2 + 2γr + ω2

0 = 0 avec ∆ = 4
(
γ2 − ω2

0
)

< 0. Les racines sont donc complexes :

r1,2 = −γ ± j
√

ω2
0 − γ2 = −γ ± jω

où l’on a posé ω =
√

ω2
0 − γ2.

On en déduit la forme de q0(t) :

q0(t) = e−γt (A cos ωt + B sin ωt)

On cherche ensuite une solution particulière. Comme le second membre est une
constante, on cherche qp(t) = D constante. On constate alors que D = CE convient.
La solution générale est donc :

q(t) = e−γt (A cos ωt + B sin ωt) + CE
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Finalement, A et B sont déterminées à l’aide des C.I.s
A t = 0+, q(0+) = CE d’où A + CE = 0 ⇔ A = −CE. D’autre part,

dq

dt
= −γe−γt (A cos ωt + B sin ωt) + e−γt (−ωA sin ωt + Bω cos ωt)

D’où dq

dt
(0+) = 0 ⇒ −γA + Bω = 0 ⇒ B = γA

ω
et finalement : B = −CEγ/ω

On obtient donc :

q(t) = CE
[
1 − e−γt

(
cos ωt + γ

ω
sin ωt

)]

6. Exprimez le courant i(t) dans le circuit pour t > 0 en fonction de C, E, ω0 et γ.

Réponse :
Le courant est la dérivée de la charge :

i(t) = CE
ω2

0
ω

e−γt sin ωt avec ω =
√

ω2
0 − γ2

7. Donnez l’allure des courbes q(t) et i(t) en y indiquant précisément les points particu-
liers, tangentes et asymptotes.

Réponse :

8. Déterminez les énergies EL et EC respectivement emmagasinées dans la bobine et
le condensateur ainsi que l’énergie totale EG fournie par le générateur pendant le
régime transitoire en fonction de C et E.

Réponse :
L’énergie fournie EG par le générateur s’obtient en intégrant la puissance fournie
pGf

= Ei(t) par le générateur entre t = 0 et t = ∞ :

EG =
∫ +∞

0
Ei(t)dt

Comme on ne peut pas calculer directement cette intégrale, on fait un changement
de variable : i(t)dt = dq et on intègre de q(0+) = 0 à q(+∞) = CE d’où

EG =
∫ CE

0
Edq = E [q]CE

0 = CE2

Pour l’énergie emmagasinée par l’inductance et la capacité, il suffit de faire les
différences des énergies respectivement électrique et magnétique stockées dans ces
dipôles entre l’instant final et l’instant initial :

EL = ∆
(

1
2Li2

)
Comme l’intensité est nulle au départ et à la fin, on a EL = 0

EC = ∆ 1
2C

q2

⇒ EC = 1
2CE2

9. En déduire l’énergie dissipée par effet Joule dans la résistance. Ces résultats dépendent-
ils du régime particulier dans lequel se trouve le circuit ?

Réponse :
En partant de la loi des mailles, on peut montrer que le bilan d’énergie dans le circuit
s’écrit :

EG(fournie) = EL + EC + ER

On en déduit facilement l’énergie dissipée par effet Joule

ER = EG − EC − EL = 1
2CE2

Ces calculs sont indépendants du régime dans lequel se trouve le circuit (en effet, les
états initiaux et finaux sont les mêmes).
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V Pont de Wien (⋆⋆)

On considère le circuit ci-contre. Au départ,
les condensateurs sont déchargés. On ferme
l’interrupteur à t = 0. On pose τ = RC.

<latexit sha1_base64="+Req0WS2/a6xuDsMYxdqx0z3T+A="></latexit>

E

C

uC(t)

R

uR(t)

C Rs (t)

1. Déterminez s(0+).

Réponse :
La tension s est continue car il s’agit de la tension aux bornes d’un condensateur.
Au départ, les condensateurs sont déchargés donc 0 = s(0−) = s(0+).

2. En utilisant la loi des mailles et la loi des nœuds à t = 0+, montrer que :

ds

dt
(0+) = E

τ

Réponse :
La loi des nœuds indique i(0+) = iC + iR = C

ds

dt
(0+) + s(0+)/R.

De plus, la loi des mailles donne pour t = 0+, E = uC︸︷︷︸
=0

+uR + s︸︷︷︸
=0

⇒. On peut alors

combiner ces résultats pour obtenir i(0+) = E/R puis ds

dt
= E

RC
d’où le résultat

avec τ = RC.

3. Que vaut s(+∞) ?

Réponse :
On se place en régime stationnaire et les condensateurs sont équivalents à des
interrupteurs ouverts. La loi des n œuds indique que le courant dans le résistor de
droite est nul, il en va de même pour sa tension donc s(+∞) = 0.

4. Montrez que l’équation différentielle régissant l’évolution de s s’écrit :

d2s

dt2 + 3
τ

ds

dt
+ 1

τ2 s = 0

Que vaut alors le facteur de qualité ?

Réponse :
On se place à t > 0. La loi des noeuds indique i = C

ds

dt
+ s

R
. De plus, la loi des

mailles donne
E = Ri + uC + s

On dérive cette dernière :
0 = R

di

dt
+ i

C
+ ds

dt

et on substitue l’expression de i deux fois :

RC
d2s

dt2 + ds

dt
+ ds

dt
+ 1

RC
s + ds

dt
= 0

soit sous la forme canonique

d2s

dt2 + 3
τ

ds

dt
+ 1

τ2 s = 0

5. Résolvez l’équation différentielle pour t > 0.

Réponse :
On obtient par identification ω0 = 1/τ et ω0/Q = 3/τ d’où Q = 1

3 . On est donc en
présence d’un régime apériodique de solution générale :

s(t) = Aer+t + Ber−t , t > 0

De plus, la résolution de l’équation caractéristique (non détaillée ici) mène à

r± = − 3
2τ

±
√

5
2τ

La première condition initiale indique ensuite :

s(0+) = 0 = A + B ⇒ B = −A et s(t) = A
(
er+t − er−t

)
La deuxième condition initiale mène à :

ds

dt
(0+) = E

τ
= A(r+ − r−) = A

√
5

τ
⇒ A = E√

5
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Au final, on peut ré-écrire la tension s, pour t > 0 :

s(t) = E√
5

(
er+t − er−t

)
Pour aller plus loin :
Il est parfois plus simple de garder les grandeurs r+ et r−, homogènes à des inverse
de temps, pour mener à bout les calculs. Cependant, toute réponse correcte donnée
avec les temps τ+ et τ− sera aussi compté juste.

Sans l’expression exacte de ces constantes, il n’est pas possible de retrouver le terme
E/

√
5, mais ce n’est pas grave !

VI Circuit RLC parallèle (⋆ ⋆ ⋆)

La figure ci-contre donne le schéma du
montage étudié ; le générateur de tension
est idéal, de f.e.m. E constante. Les ré-
sistors sont linéaires, de résistances R et
r constantes. Tant que l’interrupteur est
ouvert, le condensateur, de capacité C,
est déchargé et la bobine idéale, d’induc-
tance L, n’est parcourue par un aucun
courant.
A t = 0, l’interrupteur est fermé instantanément et on cherche à déterminer l’évolution

ultérieure du circuit électrique.
1. Déterminez, par un raisonnement physique simple (pratiquement sans calcul), la

tension u et les intensités i, i1, i2 et i3 dans les quatre branches :

(a) Juste avant la fermeture de l’interrupteur (instant t = 0−)

Réponse :
On se trouve en régime stationnaire car l’interrupteur est ouvert depuis long-
temps.
— La tension aux bornes de la bobine est nulle (fil) donc u(0−) = 0.
— Le courant dans le condensateur est nul donc i2(0−) = 0.
— Comme u(0−), on en déduit que le courant dans la résistance est nul

i3(0−) = u(0−)/r = 0.
— L’interrupteur est ouvert donc i(0−) = 0, et donc uR(0−) = 0.

— i = i1 + i2 + i3 = 0 donc finalement i1(0−) = 0.

(b) Juste après la fermeture de l’interrupteur (instant t = 0+)

Réponse :
On remarque que u et i1 sont continus (condensateur pour la tension et bobine
pour le courant). On en déduit :
— Tension aux bornes du condensateur : u(0−) = 0 = u(0+) = 0.
— Le courant dans la résistance r est nul : i3(0+) = u(0+)/r = 0.
— Courant traversant la bobine : i1(0+) = i1(0−) = 0.
— Dès que l’on ferme l’interrupteur, i(0+) = uR(0+)

R . Or, la tension uR aux
bornes de R est donnée par la loi des mailles à t = 0+ : E = u(0+) + uR(0+)
donc uR(0+) = E. On en déduit : i(0+) = E

R .
— Le courant i(0+) s’écrit également avec la loi des noeuds : i(0+) = i1(0+) +

i2(0+) + i3(0+) donc i2(0+) = E
R

(c) Au bout d’une durée très grande (t → ∞).

Réponse :
On considère maintenant le régime permanent (stationnaire ici), avec l’interrup-
teur fermé :
— Tension aux bornes de la bobine : u(+∞) = 0.
— On en déduit que le courant dans la résistance r est nul : i3(+∞)/r = 0.
— Le condensateur est équivalent à un interrupteur ouvert : i2(+∞) = 0
— Le courant i est égal à i = E/R (même raison que pour la question a) : loi

des mailles ⇒ E + Ri(+∞) + u(+∞) = 0)
— D’après la loi des noeuds : i = i1 + i2 + i3 donc i1(+∞) = i + ∞ = E/R

2. Établissez l’équation différentielle liant i3 à ses dérivées par rapport au temps t.
Montrer en particulier que l’on a :

d2i3

dt2 + 2λ
di3

dt
+ ω2

0i3 = 0 avec ω0 = 1√
LC

et λ = R + r

2RrC

Réponse :
On cherche à obtenir l’équation pour i3 une fois l’interrupteur K fermé (t > 0) :

PCSI 1, Loritz, M. M-B Page 6/ 8



TD 07 | E3 2025/2026 Régimes transitoires du 2nd ordre

Pour aller plus loin :
On va utiliser la même technique que pour la résolution de pont de Wien. En pratique,
il faut s’assurer d’avoir au moins écrit une fois la relation constitutive de chacun des
composant puis combiner ces relations avec la loi des nœuds et les diverses lois des
mailles.

i = i1 + i2 + i3 (Loi des nœuds)

u = L
di1

dt
(Relation pour la bobine)

i2 = C
du

dt
(Relation pour le condensateur)

u = ri3 (Relation pour la résistance r)
E = Ri + u (Loi des mailles)

Ici, on a implicitement écrite les lois des deux petites mailles de droite en posant que
la tension aux bornes de r, L et C est égale à u. Toutes les équations nécessaires à la
résolution de ce problème sont donc écrite et il ne reste plus qu’à résoudre ; on peut
par exemples remplacer les courants ik en fonction de u puis terminer en sachant de
i3 = u/r

On commence par dériver la loi des nœuds pour faire apparaître la dérivée de i1 qui
apparait dans la relation constitutive de la bobine :

di

dt
= di1

dt
+ di2

dt
+ di3

dt

⇒ − 1
R

du

dt
= 1

L
u + C

d2u

dt2 + di3

dt

⇒ − r

R

di3

dt
= r

L
i3 + rC

d2i3

dt2 + di3

dt

⇒ r

L
i3 + rC

d2i3

dt2 + di3

dt
(1 + r

R
) = 0

soit au final :
d2i3

d22 + 2 r + R

2RrC

di3

dt
+ 1

LC
i3 = 0

3. Quelle relation doit-il exister entre R, r, C et L pour que la solution de l’équation
différentielle de la question précédente corresponde à un régime pseudo-périodique ?

Par la suite, on prendra : R = 2,5 kΩ ; r = 1,25 kΩ ; C = 1,0 µF ; L = 20 mH. Vérifiez
qu’on est bien dans le cas précédent.

Réponse :
Avant de répondre à la question, il faut obtenir l’expression du facteur de qualité. En
identifiant l’équations différentielle obtenue à la forme canonique, on obtient ;

ω0 = 1√
LC

et ω0

Q
= r + R

RrC
⇒ Q = 1√

LC
× RrC

r + R
= Rr

r + R

√
C

L

Pour aller plus loin :
Si l’on prend r = R, on obtient Q = R

2
√

C/L, soit, au facteur 2 près, l’inverse du
facteur de qualité pour un circuit RLC série. En général, lorsque l’on place certains
dipôles en parallèles, on obtiendra toujours un facteur du qualité du même type
(R

√
C/L), à une constante sans dimension près.

Le régime obtenu est pseudo périodique si Q > 1/2. De plus, avec les valeurs proposées,
on a

Rr

r + R

√
C

L
≈ 5, 9 >

1
2

On se trouve donc bien en régime pseudo périodique.

4. Que caractérise λ ?

Réponse :
On remarque dans un premier temps que 2λ = ω0/Q en comparant l’équation diffé-
rentielle à la forme canonique. De plus, l’équation caractérisque associé à l’équation
différentielle s’exprime selon r2 + (ω0/Q)r + ω2

0 = 0 et admet pour racines :

r± = − ω0

2Q
± 1

2 iω0

√
4 − 1

Q2 = − ω0

2Q
± iω0

√
1 − 1

4Q2

La partie réelle des racines est liée au temps caractéristique τ selon

τ = − 1
ℜ(r±) = 2Q

ω0
= 1

λ

On déduit que la constante lambda est reliée à l’inverse du temps caractérisque
qui apparaît dans les solutions de l’équation différentielle, en cas de régime pseudo-
périodique.
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5. Définissez la pseudo-pulsation ω et la pseudo-période T .

Réponse :
De même, la pseudo pulsation ω est reliée à la valeur absolue de la partie imaginaire
des racines de l’équation caractéristique

ω = |ℑ(r±)| = ω0

√
1 − 1

4Q2 =
√

ω2
0 − λ2

Pour aller plus loin :
Ainsi, on remarque que pour le régime pseudo périodique de l’équation de l’oscillateur
amorti, la pulsation qui va apparaître dans les cosinus et sinus n’est pas la pulsation
propre : ω ̸= ω0. Cependant, pour un facteur de qualité Q → +∞ (ou pour λ → 0),
on observe que ω → ω0. Ainsi, dans le cas de l’équation de l’oscillateur harmonique,
c’est bien la pulsation ω0 qui intervient dans les solutions.
Il faut donc bien différencier ces deux situations.

6. Déterminez en fonction du temps t, le courant i3(t) (on pourra utiliser ω0 et λ,
notamment pour alléger l’écriture littérale).

Réponse :
La solution s’exprime selon :

i3(t) = e−t/τ (A cos(ωt) + B sin(ωt)) + 0

Or la première condition initiale indique :

i3(0+) = 0 = A ⇒ A = 0

De plus, on peut obtenir la deuxième condition initiale en remarquant que di3

dt
=

(1/r) × du

dt
= (1/rC)i2 d’où di3

dt
(0+) = i2(0+)/(rC) = E/(rRC). On en déduit :

Bω = E

rRC
⇒ B = E

rRCω

d’où au final :

i3(t) = E

rRCω
e−t/τ sin(ωt) = E

rRC
√

ω2
0 − λ2

e−λt sin(
√

ω2
0 − λ2 × t)

Astuces :

E1 Q4 : on doit obtenir x(t) = v0
ω0

sin(ω0t) + l0

E4 Q9 : EL = 0 et EC = 1
2 CE2 puis ER = 1

2 CE2
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