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Physique - Sujet bonus #2
04/12/2025

Ce sujet comporte 4 pages et constitue un bon entrainement (en plus du dernier DM !) pour le prochain DS. Le
dernier problème est constitué de trois parties indépendantes. La première et la dernière ont déjà été abordées dans

des exercices similaires ; je vous propose donc de vous concentrer sur la partie B.

Les exercices II et III ont été donnés en DS l’an dernier.

Si vous avez des questions, n’hésitez pas à les poser par mail ou mercredi.

I Onde sur une corde
Une corde de masse m = 50,0 g et de longueur L = 3,00 m est tendue entre deux murs. Un dynamomètre permet

de mesurer la tension F = 200 N qui s’exerce sur la corde.
1. Proposer, par analyse dimensionnelle, une expression de la vitesse de propagation c des ondes dans cette corde

en fonction des paramètres du problème.
2. On suppose de plus que la constante sans dimension vaut 1. Déduire de ce qui précède la valeur numérique de

c.
3. Représenter graphiquement le mode propre fondamental de la corde à différents instants. Pour cette questions,

on ne cherchera pas à déterminer explicitement l’expression de y(x, t). On rappelle de plus que la corde est
fixée en x = 0 et en x = L. En déduire la longueur d’onde λ1 du mode fondamental de cette corde, puis la
fréquence f1 qui lui est associée.

4. On déforme localement (à une de ses extrémités) la corde de façon à générer une impulsion. Exprimer la durée
τ nécessaire pour que celle-ci fasse un aller et retour sur la corde en fonction des paramètres du problème.
Interpréter physiquement en faisant le lien avec les fréquences propres de la corde.

5. Sur quels paramètres peut-on jouer pour modifier la fréquence d’oscillation d’une corde ? Illustrer cette réponse
sur l’exemple d’une corde de guitare.

II Pendule à clou
Un point matériel M de masse m est relié à un point O fixe par un fil de longueur l et de masse nulle. Le pendule

est lâché tendu, sans vitesse initiale depuis l’horizontal. On note g l’accélération de la pesanteur et on néglige tout
frottement.
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1. Rappeler la définition d’un référentiel galiléen. Proposer un référentiel galiléen pour l’étude du mouvement du
point matériel M.
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2. Énoncer le théorème de l’énergie mécanique. Y a-t-il conservation de l’énergie mécanique dans le problème
étudié ?

3. Exploiter le théorème de l’énergie mécanique pour exprimer la vitesse v0 et la vitesse angulaire ω0 de M lorsque
le pendule passe par la verticale.

Lorsque le pendule passe par la verticale, il vient frapper un clou en O’, perpendiculaire au plan de la figure,
situé à la verticale de O à la distance d (avec d < l). Pour étudier cette seconde phase du mouvement, on redéfinit
l’angle θ comme l’angle d’inclinaison par rapport à la verticale de la partie mobile O’M du pendule, comme indiqué
sur la figure du problème. On suppose que le choc du pendule sur la tige ne modifie pas l’énergie mécanique du
système.

4. Justifier que la vitesse v1 et la vitesse angulaire ω1 de M immédiatement après le choc s’expriment :

v1 =
√

2gl et ω1 =
√

2gl

l − d

5. Refaire le schéma de la seconde phase en y ajoutant les vecteurs de la base polaire ( #»er, #»eθ) au niveau du point
M. Exprimer le vecteur position

−−→
O′M, et les vecteurs vitesses et accélération.

6. Appliquer le principe fondamental de la dynamique et le projeter dans la base polaire.
7. Pour une inclinaison quelconque, montrer que la vitesse v de M s’exprime :

v(θ) =
√

2g(d + (l − d) cos(θ)).

On pourra soit appliquer la théorème de l’énergie mécanique, soit, à partir de la projection du principe
fondamental de la dynamique selon #»eθ, multiplier par θ̇ et intégrer par rapport au temps.

8. En déduire que la norme de la tension du fil s’exprime :

T (θ) = mg

(
3 cos(θ) + 2d

l − d

)

9. À quelle condition sur T le pendule fera-t-il un tour complet autour de O’ en restant tendu ? Montrer que cela
n’est possible que si d > 3l/5.

10. On suppose que l = 2d. Pour quel angle θD le pendule se détendra-t-il ? Quelle est alors la vitesse de M ? Que
se passera-t-il par la suite ?

III La luge : un sport olympique
La luge est devenue un sport olympique en 1964 à Innsbruck (Autriche). Le lugeur, allongé sur le dos sur la luge

et les pieds en avant, descend une piste de glace. Pour freiner, ce dernier ne peut compter que sur ses pieds car la
luge ne comporte pas de frein. Les spécialistes peuvent atteindre des vitesses supérieures à 100 km/h.

On assimile l’ensemble { luge + lugeur } (désigné par la suite sous le terme simple de luge) à un point matériel
M de masse m = 100 kg. La piste est considérée comme un référentiel galiléen. L’accélération de la pesanteur est
prise égale à g = 10 m · s−2.

III.A Descente rectiligne

Après la phase de poussée, la luge atteint une vitesse V0 = 5,0 m · s−1.
Elle descend ensuite une piste rectiligne de pente constante, inclinée
de 10 % (on descend verticalement de 10 m quand on avance horizon-
talement de 100 m).

On appelle α l’angle que fait la piste avec l’horizontale. Les frottements
sont négligés devant les autres forces en jeu. Le point M est ainsi en
mouvement rectiligne uniformément accéléré.

O

A
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1. Après avoir clairement défini le repère choisi, appliquer la relation fondamentale de la dynamique pour exprimer
puis calculer numériquement la norme de l’accélération a de la luge en fonction de g et de l’angle α.

2. L’origine des temps est fixée juste après la phase de poussée. Donner l’expression de la vitesse en fonction du
temps. Au bout de quelle durée ta la luge atteint-elle la vitesse Va = 25 m · s−1 ? Donner l’expression analytique
du résultat et faites l’application numérique.

3. Quelle est la distance parcourue Da lorsque la luge atteint la vitesse Va ? Donner l’expression analytique du
résultat et faites l’application numérique.

4. Retrouver l’expression de Da en utilisant le théorème de l’énergie cinétique.

III.B Virage circulaire

e

e

Vue de dessus de la piste

e

e

e!

Vue en coupe de la piste
À présent, le point M est en mouvement circulaire uniforme à la vitesse V , sur un cercle de rayon ρ = 15 m. La

piste est inclinée latéralement d’un angle β ∈]0, π
2 [. La trajectoire se situe dans un plan horizontal donc la vitesse

s’exprime simplement selon #»v = V #»e θ.
Le trièdre de vecteur unitaires ( #»e r, #»e θ, #»e z) est orthonormé direct. On désigne par #»

R = RN
#»n + RT

#»
t la réaction

de la piste, qui n’est plus uniquement normale (présence éventuelle de frottements solide). Les vecteurs unitaires #»n
(normal) et #»

t (tangent) sont définis sur la figure de droite ci-dessus.
On remarquera que #   »

RT ne désigne pas le frottement solide qui tend à freiner la luge le long de sa trajectoire
circulaire (ce frottement-ci est négligé, car on considère que la luge parcourt le virage à vitesse constante), mais le
frottement solide qui lui permet au contraire de ne pas déraper et donc de ne pas être éjectée suivant la direction
− #»

t . #   »

RT est donc suivant le vecteur + #»
t .

5. Refaire le schéma vue de dessus et représenter la vitesse et l’accélération. Exprimer ensuite l’accélération #»a en
fonction de V , ρ et de #»e r. Justifier physiquement le sens de l’accélération.

6. La luge n’étant soumise qu’à son poids et à la réaction du support, écrire la relation fondamentale de la
dynamique en projection dans le repère

(
#»
t , #»n

)
. On représentera les forces sur un schéma de la vue en coupe

de la piste.
7. Montrer alors que les composantes de la réaction du support s’expriment selon

RT = −mg sin(β) + m
V 2

ρ
cos(β) (III.1)

RN = +mg cos(β) + m
V 2

ρ
sin(β) (III.2)

8. Quelle est l’expression de la vitesse Vc pour laquelle la réaction tangentielle est nulle ? Effectuer l’application
numérique pour un angle βi = 60°. Écrire ensuite RT en fonction de m, ρ β et (V 2 − V 2

c ).
Soit fl = 0, 4 le coefficient de frottement latéral de la luge sur la piste de glace. Les lois du frottement solide

indiquent que la luge ne dérape pas tant que |RT | ≤ fl|RN |. Dans la suite des questions, on ne considère que le cas
V ≥ Vc ce qui correspond à un dérapage possible vers l’extérieur du virage.

Lycée Loritz - M. Miguel-Brebion Sujet bonus #2 3/4



PCSI 1 Sujet 2025-2026

9. Montrer que V doit respecter l’inégalité suivante pour éviter le dérapage :

V 2(cos β − fl sin β) ≤ gρ(sin β + fl cos β)

10. En déduire que si l’inclinaison β est suffisante, il n’y aura jamais dérapage quelle que soit la vitesse V . Donner
l’inclinaison minimale βc à respecter, qui dépend uniquement du coefficient fl. Faire l’application numérique et
convertir le résultat en degrés et commenter le résultat.

11. Si cette inclinaison minimale n’est pas respectée, montrer que la condition de non-dérapage impose une vitesse
Vmax à ne pas dépasser, à exprimer en fonction de g, ρ, β et fl. Effectuer l’application numérique toujours pour
l’angle βi = 60°. Que risque la luge si sa vitesse est trop grande ?

12. Justifier à partir des résultats précédents qu’en l’absence de frottement latéral, on ne pourrait aborder le virage
qu’à la vitesse Vc. Les frottements permettent ainsi d’avoir une certaine marge de vitesse dans un virage.

III.C Freinage final

La luge franchit la ligne d’arrivée à la vitesse Vf = 30 m · s−1. Il faut alors envisager un moyen efficace permettant
de freiner en toute sécurité. On envisage alors le cas d’une piste de freinage horizontale et rectiligne dont la longueur
L sera à déterminer. Sauf mention contraire, la seule source de frottement considérée est la force de frottement
solide caractérisé par le coefficient de frottement frontal ff tel que || #»

RT || = ff || #»

RN ||.

13. Déterminer l’expression de la réaction tangentielle #»

RT en fonction des données du problème
14. On considère que la luge s’arrête au bout de la piste de freinage (distance de freinage L). Exprimer alors L en

fonction de Vf , ff et g en utilisant le théorème de l’énergie cinétique.
15. Le coefficient de frottement frontal (dans le sens du mouvement) entre la luge et la piste vaut ff = 0, 01.

Effectuer l’application numérique pour L. Conclusion.
16. En pratique, le lugeur peut aussi utiliser ces pieds pour freiner de manière plus efficace. Le coefficient de

frottement vaut alors f ′
f = 0, 4. En déduire la valeur numérique correspondante de L′.
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