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Corrigé

I Onde sur une corde
Une corde de masse m = 50,0 g et de longueur L = 3,00 m est tendue entre deux murs. Un dynamomètre permet

de mesurer la tension F = 200 N qui s’exerce sur la corde.
1. Proposer, par analyse dimensionnelle, une expression de la vitesse de propagation c des ondes dans cette corde

en fonction des paramètres du problème.

Réponse :
On suppose qu’il existe un réel k et trois réels α, β et γ tels que

c = kmαLβF γ

On procède ensuite par analyse dimensionnelle

M0.L1.T −1 = MαLβ(M.L.T −2)γ

⇒ M0.L1.T −1 = Mα+γLβ+γT −2γ

On en déduit 
α + γ = 0
β + γ = 1
−2γ = −1

⇒


γ = 1/2
β = 1/2
α = −1/2

soit au final c = k

√
LF

m
avec k une constante sans dimension.

2. On suppose de plus que la constante sans dimension vaut 1. Déduire de ce qui précède la valeur numérique de
c.

Réponse :
pour k = 1, on obtient c ≈ 110 m · s−1

3. Représenter graphiquement le mode propre fondamental de la corde à différents instants. Pour cette questions,
on ne cherchera pas à déterminer explicitement l’expression de y(x, t). On rappelle de plus que la corde est
fixée en x = 0 et en x = L. En déduire la longueur d’onde λ1 du mode fondamental de cette corde, puis la
fréquence f1 qui lui est associée.

Réponse :
On obtient le graphique suivant
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et on en déduit que L = λ1/2. En effet, on observe bien une demie longueur d’onde sur les courbes soit au
final λ1 = L/2 . De plus, la fréquence s’exprime selon f1 = c/λ1 = c

2L
.

4. On déforme localement (à une de ses extrémités) la corde de façon à générer une impulsion. Exprimer la durée
τ nécessaire pour que celle-ci fasse un aller et retour sur la corde en fonction des paramètres du problème.
Interpréter physiquement en faisant le lien avec les fréquences propres de la corde.

Réponse :
La perturbation va effectuer un aller retour donc parcourir la distance 2L à la vitesse c. On en déduit que
τ = 2L/c . On observe que cette durée représente l’inverse de la fréquence fondamentale f1.

5. Sur quels paramètres peut-on jouer pour modifier la fréquence d’oscillation d’une corde ? Illustrer cette réponse
sur l’exemple d’une corde de guitare.

Réponse :
Sur une guitare, on peut modifier la longueur de la corde en pinçant la corde sur différentes frettes. Cela
modifie f1. On peut aussi modifier sa masse (en utilisant différents matériaux ou épaisseurs) ou bien la tension
F . Cela permet de modifier c et donc f1.

II Pendule à clou
Un point matériel M de masse m est relié à un point O fixe par un fil de longueur l et de masse nulle. Le pendule

est lâché tendu, sans vitesse initiale depuis l’horizontal. On note g l’accélération de la pesanteur et on néglige tout
frottement.

l

l l
d

x x
zz

M
M
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1. Rappeler la définition d’un référentiel galiléen. Proposer un référentiel galiléen pour l’étude du mouvement du

point matériel M.

Réponse :
Un référentiel galiléen est un référentiel dans lequel le principe d’inertie est vérifié, c’est-à-dire dans lequel tout
système isolé est soit au repos, soit animé d’un mouvement rectiligne uniforme. Dans ce problème, on peut
choisir le référentiel du laboratoire, dans lequel le support maintenant le pendule est fixe.

2. Énoncer le théorème de l’énergie mécanique. Y a-t-il conservation de l’énergie mécanique dans le problème
étudié ?

Réponse :
Le théorème de l’énergie mécanique s’écrit : ∆Em = W NC , où ∆Em est la variation de l’énergie mécanique
entre deux instants du mouvement, et W NC est le travail des forces non conservatives entre ces deux instants.
Dans notre cas, comme le poids est une force conservative et la tension du fil ne travaille pas, le travail des
forces non conservatives est nul, il y a donc conservation de l’énergie mécanique.

3. Exploiter le théorème de l’énergie mécanique pour exprimer la vitesse v0 et la vitesse angulaire ω0 de M lorsque
le pendule passe par la verticale.

Réponse :

— Système : M de masse m ; Référentiel du laboratoire galiléen
— Bilan des forces :

— Le poids #»

P , associé à l’énergie potentielle Ep = mgz

— La tension du fil #»

T (travail nul)
L’énergie mécanique à l’instant initial s’exprime (vitesse initiale nulle, et z = 0) :

Em(θ = 0) = 1
2m × 02 + mg × 0 = 0

L’énergie mécanique lorsque le pendule est la verticale s’exprime :

Em(θ = π/2) = 1
2mv2

0 + mg(−l) = 1
2mv2

0 − mgl

Par conservation de l’énergie mécanique, on obtient :

Em(θ = 0) = Em(θ = π/2) =⇒ 1
2mv2

0 − mgl = 0 =⇒ v0 =
√

2gl

Or le vecteur vitesse s’exprime : #»v = lθ̇ #»e θ (si l’on se munit d’une base polaire), soit v = lω où v est la norme

de la vitesse, et ω la vitesse angulaire. On en déduit alors ω0 = v0
l

=
√

2g

l

Lorsque le pendule passe par la verticale, il vient frapper un clou en O’, perpendiculaire au plan de la figure,
situé à la verticale de O à la distance d (avec d < l). Pour étudier cette seconde phase du mouvement, on redéfinit
l’angle θ comme l’angle d’inclinaison par rapport à la verticale de la partie mobile O’M du pendule, comme indiqué
sur la figure du problème. On suppose que le choc du pendule sur la tige ne modifie pas l’énergie mécanique du
système.
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4. Justifier que la vitesse v1 et la vitesse angulaire ω1 de M immédiatement après le choc s’expriment :

v1 =
√

2gl et ω1 =
√

2gl

l − d

Réponse :
Par continuité de la vitesse, v1 = v0 (on peut également le montrer par conservation de l’énergie mécanique
au moment du choc). En revanche, compte tenu de la nouvelle définition de θ (et de la discontinuité du rayon
de la trajectoire, qui passe de l et l − d), on trouve que ω1 = v1

l − d
= ω0

1 − d/l
.

5. Refaire le schéma de la seconde phase en y ajoutant les vecteurs de la base polaire ( #»er, #»eθ) au niveau du point
M. Exprimer le vecteur position

−−→
O′M, et les vecteurs vitesses et accélération.

Réponse :

Le vecteur position s’exprime :
−−→
O′M = (l − d) #»er .

Par dérivations successives, on obtient : #»v = (l − d)θ̇ #»eθ et
#»a = (l − d)θ̈ #»eθ − (l − d)θ̇2 #»er . l

d

x
z

⃗er

⃗eθ

M

6. Appliquer le principe fondamental de la dynamique et le projeter dans la base polaire.

Réponse :
Bilan des forces :

— Le poids #»

P = −mg #»e z = mg(cos(θ) #»e r − sin(θ) #»e θ)
— La tension du fil #»

T = −T #»e r

On applique alors le PFD à M dans le référentiel galiléen

m((l − d)θ̈ #»eθ − (l − d)θ̇2 #»er) = mg(cos(θ) #»er − sin(θ) #»eθ) − T #»er

soit en décomposant

−m(l − d)θ̇2 = mg cos(θ) − T (II.1)
m(l − d)θ̈ = −mg sin(θ) (II.2)

7. Pour une inclinaison quelconque, montrer que la vitesse v de M s’exprime :

v(θ) =
√

2g(d + (l − d) cos(θ)).
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On pourra soit appliquer la théorème de l’énergie mécanique, soit, à partir de la projection du principe
fondamental de la dynamique selon #»eθ, multiplier par θ̇ et intégrer par rapport au temps.

Réponse :
L’énergie mécanique initiale s’exprime :

Em(θ = 0) = 1
2mv2

1 − mgl

À un angle θ quelconque, on a z = −d − (l − d) cos(θ). L’énergie mécanique s’exprime donc :

Em(θ) = 1
2mv(θ)2 + mgz = 1

2mv(θ)2 − mg(d + (l − d) cos(θ))

La conservation de l’énergie mécanique permet donc d’obtenir :

Em(0) = Em(θ) =⇒ 1
2mv2

1 − mgl = 1
2mv(θ)2 − mg(d + (l − d) cos(θ))

En utilisant v1 = v0 =
√

2gl, on obtient le résultat attendu.

8. En déduire que la norme de la tension du fil s’exprime :

T (θ) = mg

(
3 cos(θ) + 2d

l − d

)

Réponse :
À partir du PDF projeté selon #»er, on obtient :

T (θ) = mg cos(θ) + m(l − d)θ̇2

Or θ̇ = v
l−d , cela donne donc :

T (θ) = mg cos(θ) + m
v2

l − d
= mg cos(θ) + 2mg

(
d

l − d
+ cos(θ)

)
= mg

(
3 cos(θ) + 2d

l − d

)

9. À quelle condition sur T le pendule fera-t-il un tour complet autour de O’ en restant tendu ? Montrer que cela
n’est possible que si d > 3l/5.

Réponse :
Le fil reste tendu tant que T > 0. Donc le pendule fera un tour complet autour de O’ si ∀θ ∈ [0, 2π]T (θ) > 0.
En particulier, comme T (θ) est minimal pour θ = π, il faut que

T (θ = π) > 0 ⇐⇒ mg

(
3 cos(π) + 2d

l − d

)
> 0

Cela mène à d > 3l/5 .
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10. On suppose que l = 2d. Pour quel angle θD le pendule se détendra-t-il ? Quelle est alors la vitesse de M ? Que

se passera-t-il par la suite ?

Réponse :
Comme d = l

2 <
3l

5 , le pendule ne peut faire un tour complet en restant tendu. En repartant de la condition
précédente : le fil reste tendu tant que T (θ) > 0 soit :

mg

(
3 cos(θ) + 2d

l − d

)
> 0 =⇒ cos(θ) > −2d/3

l − d
= −2

3

Ainsi, le pendule se détend lorsque : θ = θD = arccos
(

−2
3

)
.

En reprenant l’expression de la vitesse obtenue à la question 7, on trouve :

v(θD) =
√

2g(d + (l − d) ×
(

−2
3

)
=⇒ v(θD) =

√
gl

3

Par la suite, comme le point matériel M n’est plus soumis qu’à la pesanteur, il suivra une trajectoire de chute
libre, avec une vitesse initiale de norme v(θD), et porté par le vecteur #»eθ lorsque θ = θD, jusqu’à ce qu’il soit
de nouveau rappelé par le fil.

III La luge : un sport olympique (ATS 2013)
La luge est devenue un sport olympique en 1964 à Innsbruck (Autriche). Le lugeur, allongé sur le dos sur la luge

et les pieds en avant, descend une piste de glace. Pour freiner, ce dernier ne peut compter que sur ses pieds car la
luge ne comporte pas de frein. Les spécialistes peuvent atteindre des vitesses supérieures à 100 km/h.

On assimile l’ensemble { luge + lugeur } (désigné par la suite sous le terme simple de luge) à un point matériel
M de masse m = 100 kg. La piste est considérée comme un référentiel galiléen. L’accélération de la pesanteur est
prise égale à g = 10 m · s−2.

III.A Descente rectiligne

Après la phase de poussée, la luge atteint une vitesse V0 = 5,0 m · s−1.
Elle descend ensuite une piste rectiligne de pente constante, inclinée
de 10 % (on descend verticalement de 10 m quand on avance horizon-
talement de 100 m).

On appelle α l’angle que fait la piste avec l’horizontale. Les frottements
sont négligés devant les autres forces en jeu. Le point M est ainsi en
mouvement rectiligne uniformément accéléré.

O

A

1. Après avoir clairement défini le repère choisi, appliquer la relation fondamentale de la dynamique pour exprimer
puis calculer numériquement la norme de l’accélération a de la luge en fonction de g et de l’angle α.

Réponse :

— Système : M de masse m ; Référentiel galiléen lié à la piste
— repère cartésien (mouvement rectiligne) O, #»e x, #»e z avec #»e x colinéaire à la piste , dans le sens du mouvement

et #»e z vers le haut.
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#»e x

#»e z

O
#»

Rn

#»

P

M

α

— Bilan des forces :
— Le poids #»

P = mg(sin(α) #»e x + − cos(α) #»e z)
— La réaction normale du support #»

Rn = Rn
#»e z avec Rn ≥ 0 en cas de contact.

On applique le PFD à M dans le référentiel galiléen en projection selon l’axe O, #»e x et on obtient

ma = mg sin(α) ⇒ a = g sin(α)

De plus, on a tan(α) = 10/100 ⇒ α ≈ 0,1 rad On en déduit que a ≈ 1 m/s2

Pour aller plus loin :
On peut aussi choisir un repère horizontal/vertical, mais les calculs vont y être beaucoup plus difficiles. En
effet, l’accélération n’est pas simple à y exprimer, et il va falloir "se débarrasser" de Rn, qui apparaît selon les
deux directions.

2. L’origine des temps est fixée juste après la phase de poussée. Donner l’expression de la vitesse en fonction du
temps. Au bout de quelle durée ta la luge atteint-elle la vitesse Va = 25 m · s−1 ? Donner l’expression analytique
du résultat et faites l’application numérique.

Réponse :
On intègre le résultat précédent en prenant en compte la condition initiale v(0) = V0

v(t) = g sin(α)t + V0

On a ensuite simplement

v(ta) = Va = V0 + g sin(α)ta ⇒ ta = Va − V0
g sin(α) ≈ 20,1 s

3. Quelle est la distance parcourue Da lorsque la luge atteint la vitesse Va ? Donner l’expression analytique du
résultat et faites l’application numérique.

Réponse :
On considère alors x(ta) = V0ta + g sin(α) t2

a
2 + x(0). La distance parcourrue vaut alors

Da = x(ta) − x(0) = V0
Va − V0
g sin(α) + (Va − V0)2

2g sin(α) = Va − V0
2g sin(α) (2V0 + Va − V0) (III.1)

⇒ Da = V 2
a − V 2

0
2g sin(α) ≈ 301,5 m (III.2)
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4. Retrouver l’expression de Da en utilisant le théorème de l’énergie cinétique.

Réponse :
La description du système a déjà été effectuée. On observe de plus que la reaction normale du support ne
travaille pas (perpendiculaire au déplacement) que δWP = #»

P · d #      »

OM = mg sin(α)dx On suppose que M est
initialement en O et qu’il sera en A lorsque t = ta On applique alors le TEC à M dans R galiléen entre O et A

∆Ec = WOA( #»

P ) =
∫ Da

x=0
mg sin(α)dx ⇒ 1

2m(V 2
a − V 2

0 ) = mg sin(α)Da (III.3)

⇒ Da = V 2
a − V 2

0
2g sin(α) (III.4)

Pour aller plus loin :
On obtient bien la même expression qu’à la question précédente. On aurait aussi pu ré-obtenir ce résultat plus
simplement à l’aide d’un TEM car le poids est une force conservative.

III.B Virage circulaire

e

e

Vue de dessus de la piste

e

e

e!

Vue en coupe de la piste
À présent, le point M est en mouvement circulaire uniforme à la vitesse V , sur un cercle de rayon ρ = 15 m. La

piste est inclinée latéralement d’un angle β ∈]0, π
2 [. La trajectoire se situe dans un plan horizontal donc la vitesse

s’exprime simplement selon #»v = V #»e θ.

Le trièdre de vecteur unitaires ( #»e r, #»e θ, #»e z) est orthonormé direct. On désigne par #»

R = RN
#»n + RT

#»
t la réaction

de la piste, qui n’est plus uniquement normale (présence éventuelle de frottements solide). Les vecteurs unitaires #»n
(normal) et #»

t (tangent) sont définis sur la figure de droite ci-dessus.
On remarquera que #   »

RT ne désigne pas le frottement solide qui tend à freiner la luge le long de sa trajectoire
circulaire (ce frottement-ci est négligé, car on considère que la luge parcourt le virage à vitesse constante), mais le
frottement solide qui lui permet au contraire de ne pas déraper et donc de ne pas être éjectée suivant la direction
− #»

t . #   »

RT est donc suivant le vecteur + #»
t .

5. Refaire le schéma vue de dessus et représenter la vitesse et l’accélération. Exprimer ensuite l’accélération #»a en
fonction de V , ρ et de #»e r. Justifier physiquement le sens de l’accélération.

Réponse :
Comme indiqué dans l’énoncé, la vitesse est portée par le vecteur #»e θ. De plus, l’accélération dans le cas d’un
mouvement circulaire uniforme est portée suivant le vecteur radial − #»e r (on tourne bien à gauche sur le schéma
d’où le "-").
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e

e#»a
#»a

e

e

#»e θ
#»

P

#»

R

M

On se place alors en repère polaire et on observe que
#      »

OM = ρ #»e r ; #»v = ρθ̇ #»e θ = V #»e θ ; #»a = −V θ̇ #»e r = −V 2

ρ
#»e r

car θ̇ = V/ρ.

6. La luge n’étant soumise qu’à son poids et à la réaction du support, écrire la relation fondamentale de la
dynamique en projection dans le repère

(
#»
t , #»n

)
. On représentera les forces sur un schéma de la vue en coupe

de la piste.

Réponse :
Bilan des forces :

— Le poids #»

P = −mg #»e z = mg(sin(β) #»
t − cos(β) #»n)

— La réaction du support #»

R = RN
#»n + RT

#»
t

On a de plus #»a = −V 2

ρ
#»e r = V 2

ρ (cos(β) #»
t + sin(β) #»n). On applique alors le PFD à M dans R galiléen

m
V 2

ρ
(cos(β) #»

t + sin(β) #»n) = mg(sin(β) #»
t − cos(β) #»n) + RN

#»n + RT
#»
t

soit en décomposant

m
V 2

ρ
cos(β) = mg sin(β) + RT (III.5)

m
V 2

ρ
sin(β) = −mg cos(β) + RN (III.6)

7. Montrer alors que les composantes de la réaction du support s’expriment selon

RT = −mg sin(β) + m
V 2

ρ
cos(β) (III.7)

RN = +mg cos(β) + m
V 2

ρ
sin(β) (III.8)

Réponse :
On en déduit simplement des questions précédentes le résultat attendu

RT = −mg sin(β) + m
V 2

ρ
cos(β) (III.9)

Rn = mg cos(β) + m
V 2

ρ
sin(β) (III.10)
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Pour aller plus loin :
C’est une question type "Montrer que", elle est là pour vous aider à trouver vos erreurs, et s’assurer que vous
repartez bien des bons résultats (bouée de sauvetage !). Cependant, ne "truandez" pas pour obtenir ce résultat.
Si ça ne marche pas, au niveau des signes par exemple, c’est que vous avez fait des erreurs avant.

8. Quelle est l’expression de la vitesse Vc pour laquelle la réaction tangentielle est nulle ? Effectuer l’application
numérique pour un angle βi = 60°. Écrire ensuite RT en fonction de m, ρ β et (V 2 − V 2

c ).

Réponse :
On a ici

−mg sin(β) + m
V 2

c

ρ
cos(β) = 0 ⇒ Vc =

√
ρg tan(β) ≈ 16,1 m · s−1

On peut donc réécrire l’expression de RT en combinant l’équation précédente à celle pour RT dans le cas
général (on peut aussi procéder par substitution , mais c’est plus long) :

RT = m

ρ
cos(β)

(
V 2 − mρg sin(β)

m cos(β)

)
⇒ RT = m

ρ
cos(β)

(
V 2 − V 2

c

)

Soit fl = 0, 4 le coefficient de frottement latéral de la luge sur la piste de glace. Les lois du frottement solide
indiquent que la luge ne dérape pas tant que |RT | ≤ fl|RN |. Dans la suite des questions, on ne considère que le cas
V ≥ Vc ce qui correspond à un dérapage possible vers l’extérieur du virage.

9. Montrer que V doit respecter l’inégalité suivante pour éviter le dérapage :

V 2(cos β − fl sin β) ≤ gρ(sin β + fl cos β)

Réponse :
Il convient de comparer les expressions obtenues pour RT et RN sachant que ces grandeurs sont positives (c.f.
question précédente) :

|RT | ≤ fl|RN | ⇒ −mg sin(β) + m
V 2

ρ
cos(β) ≤ fl

(
mg cos(β) + m

V 2

ρ
sin(β)

)
(III.11)

⇒ V 2 (cos(β) − fl sin(β)) ≤ ρg (fl cos(β) + sin(β)) (III.12)

d’où le résultat.

10. En déduire que si l’inclinaison β est suffisante, il n’y aura jamais dérapage quelle que soit la vitesse V . Donner
l’inclinaison minimale βc à respecter, qui dépend uniquement du coefficient fl. Faire l’application numérique et
convertir le résultat en degrés et commenter le résultat.

Réponse :
On sait que β ∈]0, π/2[. On en déduit que fl cos(β) + sin(β) ≥ 0 sur cet intervalle. Ainsi, dans le cas où
cos(β) − fl sin(β) ≤ 0, l’inégalité précédente sera toujours vérifiée (et donc quelle que soit V ). En effet, un réel
négatif est toujours inférieur ou égal à un réel positif

cos(β) − fl sin(β) ≤ 0 ⇒ cos(β) ≤ fl sin(β) ⇒ β ≥ arctan
( 1

fl

)
= βc avec βc ≈ 68, 2°

Le virage doit donc être proche de la verticale afin de pouvoir être emprunté à n’importe quelle allure sans
dérapage.

Lycée Loritz - M. Miguel-Brebion Sujet bonus #2 10/13



PCSI 1 Corrigé 2025-2026

11. Si cette inclinaison minimale n’est pas respectée, montrer que la condition de non-dérapage impose une vitesse
Vmax à ne pas dépasser, à exprimer en fonction de g, ρ, β et fl. Effectuer l’application numérique toujours
pour l’angle βi = 60°. Que risque la luge si sa vitesse est trop grande ?

Réponse :
Dans cette situation, cos(β) − fl sin(β) > 0 et on obtient :

V ≤
√

ρg (fl cos(β) + sin(β))
cos(β) − fl sin(β) = √

ρg

√
fl + tan(β)

1 − fl tan(β) = Vmax

L’application numérique donne Vmax ≈ 32,3 m · s−1 . Si la vitesse est trop grande, la condition de non-glissement
latéral ne sera plus remplie et la luge va être déportée vers l’extérieur du virage.

12. Justifier à partir des résultats précédents qu’en l’absence de frottement latéral, on ne pourrait aborder le virage
qu’à la vitesse Vc. Les frottements permettent ainsi d’avoir une certaine marge de vitesse dans un virage.

Réponse :
En l’absence de frottement latéral, RT = 0. Si V = Vc, le modèle étudié n’est plus valable et l’hypothèse de la
trajectoire circulaire doit être remise en cause. La luge risque donc de quitter la piste. La prise en compte
des frottements latéraux permet donc d’obtenir plus de souplesse lors de la prise du virage car on peut alors
utiliser des vitesses comprises entre VC et Vmax.

III.C Freinage final

La luge franchit la ligne d’arrivée à la vitesse Vf = 30 m · s−1. Il faut alors envisager un moyen efficace permettant
de freiner en toute sécurité. On envisage alors le cas d’une piste de freinage horizontale et rectiligne dont la longueur
L sera à déterminer. Sauf mention contraire, la seule source de frottement considérée est la force de frottement
solide caractérisé par le coefficient de frottement frontal ff tel que || #»

RT || = ff || #»

RN ||.

13. Déterminer l’expression de la réaction tangentielle #»

RT en fonction des données du problème

Réponse :
On considère la luge dans le référentiel galiléen lié à la piste. On se place dans un repère cartésien dont l’axe
Ox est colinéaire à la piste et orienté selon le sens du mouvement. Le bilan des actions extérieures à la luge
indique :

— Le poids #»

P = −mg #»e z

— La réaction normale de la piste #»

RN = RN
#»e z avec RN > 0 en cas de contact.

— La réaction tangentielle de la piste #»

RT = −RT
#»e x avec RT > 0 (cette force s’oppose au mouvement).

On applique le PFD à la luge dans le référentiel d’étude galiléen

m #»a = −mg #»e z + RN
#»e z − RT

#»e x

La projection de cette relation selon #»e z donne RN = mg. On en déduit finalement que #»

Rt = −ff mg #»e x en
utilisant la relation fournie par l’énoncé en cas de glissement (loi de Coulomb).
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14. On considère que la luge s’arrête au bout de la piste de freinage (distance de freinage L). Exprimer alors L en

fonction de Vf , ff et g en utilisant le théorème de l’énergie cinétique.

Réponse :
Seule la réaction tangentielle va avoir un travail non nul (les autres forces sont perpendiculaires au mouvement).
On en déduit que W = W ( #»

RT ) = −mgff L. En effet #»

RT est constant. On applique alors le TEC à la luge
dans le référentiel galiléen lié à la piste entre l’instant où la luge franchit la ligne d’arrivée et l’instant où cette
dernière s’arrête

0 − 1
2mV 2

f = −mgfrL ⇒ L =
V 2

f

2gff

15. Le coefficient de frottement frontal (dans le sens du mouvement) entre la luge et la piste vaut ff = 0, 01.
Effectuer l’application numérique pour L. Conclusion.

Réponse :
On obtient ici L ≈ 4,5 km. Ainsi, cette méthode de freinage ne semble pas appropriée.

16. En pratique, le lugeur peut aussi utiliser ces pieds pour freiner de manière plus efficace. Le coefficient de
frottement vaut alors f ′

f = 0, 4. En déduire la valeur numérique correspondante de L′.

Réponse :
On a alors L′ = 112,5 m Ce résultat semble beaucoup plus réaliste.
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