
PCSI 1 Corrigé 2025-2026
Physique - Devoir Surveillé 04 - parcours bleu

Le 06/12/2025

Barème approximatif :

— Exercice I : 6 points
— Exercice II : 10 points
— Exercice III : 11 points

— Exercice IV : 5 points
— Soin, rédaction et rigueur : 3 points

I Questions de cours
1. Retrouvez l’équation du mouvement pour le pendule simple avec frottement fluide en utilisant le théorème

énergétique de votre choix. (un schéma détaillé est attendu avant de commencer la résolution du problème).

Réponse :

2. Dans le cas d’un mouvement à un degré de liberté, expliquez à l’aide d’un schéma la notion d’état d’équilibre.
Rappelez ensuite les conditions d’équilibre et de stabilité associées aux dérivées de l’énergie potentielle.

Réponse :

3. Obtention de la trajectoire d’un projectile de masse m lancé au niveau du sol avec une vitesse initiale de norme
v0 faisant un angle θ0 > 0 avec l’axe horizontal. Les frottements fluides sont négligés.

Réponse :

II Analyse du son produit par deux instruments

II.A Accordage d’une guitare

Soit une corde initialement au repos et confondue avec l’axe Ox, inélastique, de masse linéique µ (masse par
unité de longueur en kg · m−1), tendue par une tension pratiquement uniforme et constante T (en N).
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La corde est tendue par une masse par l’intermédiaire d’une poulie. La corde est fixée au point O et un guidage

impose y = 0 à chaque instant à l’abscisse x = L1.
On étudie les petits mouvements transversaux de la corde dans le plan xOy, autour de la position d’équilibre.

L’élongation transversale à l’instant t du point M d’abscisse x est notée y(x, t).
On rappelle l’expression de la célérité des ondes se propageant le long de la corde en fonction de µ et T :

c =
√

T

µ

1. Proposer une expression pour la résultante des ondes se propageant le long de la corde en faisant apparaître
notamment deux amplitudes a+ et a−.

Réponse :
Comme dans le cours, on obtient la somme de deux ondes se propageant en sens contraires :

s(x, t) = a+ cos(ωt − kx) + a+ cos(ωt + kx + ϕ)

Le premier terme étant associé à une onde se déplaçant selon les x croissants.

2. En appliquant la première condition limite en x = 0, justifier que l’on obtient des ondes stationnaires.

Réponse :
La corde est fixée en x = 0 soit s(0, t) = 0, ∀t ∈ R. Cela implique

a+ cos(ωt) + a+ cos(ωt + ϕ) = 0 ∀t ⇒

Cette relation est vérifiée en choisissant a− = a+ et ϕ = 0 soit :

s(x, t) = a+ (cos(ωt − kx) − cos(ωt + kx)) = 2a+ sin(ωt) sin(kx) du type f(t) · g(x)

On est donc bien en présence d’une onde stationnaire.

3. En appliquant la deuxième condition limite, montrer que seuls certains vecteurs d’onde (notés kn) sont
observables.
Démontrer ensuite que les fréquences correspondantes s’expriment selon :

f = nc

2L1
= fn avec n un entier > 0

Réponse :
L’application de la deuxième condition limite donne :

s(L1, t) = 0, ∀t ∈ R ⇒ 2a+ sin(ωt) sin(kL1) = 0, ∀t

Il suffit de se placer à t = t0 tel que sin(ωt0) ̸= 0 et on en déduit a+ = 0 (solution triviale) ou bien sin(kL1) = 0.
La solution triviale étant mise de côté (absence complète d’onde dans ce cas), on en déduit :

∃n ∈ N|kL1 = nπ ⇒ k = kn = nπ

L1

De plus, on sait que f = kc
2π ⇒ f = nc

2L1
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4. Tracer les deux premiers modes obtenus à un instant fixé et en fonction de x.

Réponse :
L’indice n du mode correspond au nombre de fuseaux qui peuvent être observés. On trace ensuite les modes à
l’instant t tel que sin(ωt) = 1 et on obtient :

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�1

1

x/L1

st(x)/(2a+)
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II.B Étude d’une flute à bec et analyse de spectre

La flûte à bec peut se modéliser au premier ordre comme un résonateur de longueur L avec des conditions aux
limites asymétriques : un tuyau ouvert à une extrémité et fermé à l’autre. Dans ce cas, à l’extrémité fermée la vitesse
s’annule (les molécules ne peuvent pas bouger).
Cela se traduit par la présence d’un nœud en x = 0 et d’un ventre en x = L pour la vitesse acoustique. Dans toute
la suite, on notera c′ la célérité du son dans l’air.

5. Reprendre l’étude réalisée dans la partie précédente et l’adapter aux nouvelles conditions limites. Il s’agira en
particulier d’établir que les fréquences propres f ′ associées aux modes acoustiques observés dans la flute à bec
s’expriment selon :

f ′ = c′

4L
+ nc′

2L
= f ′

n′ avec n′ un entier ≥ 0

Réponse :
La première CL est identique à celle rencontrée pour la corde de la guitare, on peut donc écrire :

s(x, t) = 2a+ sin(ωt) sin(kx)

car cette expression vérifie bien s(0, t) = 0, ∀t ∈ R. On observe ensuite un ventre en x = L soit :

∂s

∂x
(L, t) = 0 ⇒ 2ka+ sin(ωt) cos(kL)

Soit ka+ = 0 (solution triviale car absence d’onde ) ou bien cos(kL) = 0. La deuxième solution donne :

∃n ∈ N|kL = π

2 + nπ ⇒ k = kn = π

2L
+ nπ

L

On en déduit f = c′

4L
+ nc′

2L

6. Pour une longueur L = 17,5 cm (correspondant aux deux premiers trous bouchés), on obtient une fréquence
fondamentale de fobs = 490 Hz. En déduire la valeur de la célérité du son dans l’air.

Réponse :
Le fondamental est obtenu pour n = 1 soit fobs = c′

4L ⇒ c′ = 4Lfobs ≈ 343 m · s−1 .
Ce résultat est cohérent avec nos connaissances sur la vitesse du son dans l’air.
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On a ensuite enregistré deux notes jouées par une guitare et par une flute (les notes jouées sont différentes sur
les deux instruments). Les spectres associés à ces notes sont reproduits dans les deux figures ci-dessous :
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7. Associer les spectres a et b à leurs instruments respectifs. Toute réponse non soigneusement justifiée ne sera
pas prise en compte.

Réponse :
Pour la guitare, on a f = fn = nc

2L = nf1. On va donc observer des harmoniques à f1, f2 = 2f1, f3 = 3f1, . . ..
Pour la flute, on a f ′ = f ′

n = c′

4L (1 + 2n) = (1 + 2n) f0 donc on va observer des harmoniques à f0, f1 = 3f0,
f2 = 5f0, . . .
En en déduit que le spectre a correspond à la flute car le deuxième pic est à une fréquence trois fois
plus élevée que le premier. Il existe bien un pic à 2f0 mais ce dernier est d’amplitude négligeable. A
l’inverse, le spectre b correspond à la guitare car le deuxième pic est à une fréquence deux fois plus
élevée que le premier
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III Métro gravitationnel

On peut montrer que, pour tout point M de masse m, situé à l’intérieur de la Terre à la distance r du centre O
de la Terre, l’attraction terrestre est une force agissant sur ce point, dirigée vers le centre de la terre et de valeur :

#»

F = −mg0
r

RT

#»e r

où g0 est la norme du champ de pesanteur à la surface de la
Terre, supposé uniforme, RT est le rayon de la terre, r = OM

est la distance du point M au centre et #»e r =
−−→
OM
OM est le vecteur

unitaire radial.

On considère un tunnel imaginaire rectiligne AB, d’axe Hx (on
prendra H l’origine de l’axe et #»e x le vecteur directeur unitaire
dirigé de A vers B) ne passant pas par O et traversant la Terre.
On note h la distance OH du tunnel au centre.

Un véhicule, assimilé à un point matériel M (masse m), glisse
sans frottement dans le tunnel. Des parois magnétiques évitent
même que le véhicule ne soit en contact avec les parois. Ce
véhicule part du point A de la surface terrestre sans vitesse
initiale.

1. Montrer que la force #»

F est conservative et qu’elle dérive de l’énergie potentielle Ep = mg0
RT

r2

2 + K.

Réponse :
Calculons le travail élémentaire de la force #»

F :

δW = #»

F .d #      »

OM = −mg0
r

RT

#»e r.d(r #»e r) = −mg0
r

RT

#»e r.(dr #»er + rdθ #»e θ)

On en déduit, entre deux points A et B :

δW = −mg0
r

RT
dr ⇒ WA→B =

∫
−mg0

r

RT
dr =

[
−mg0r2

2RT
+ K

]rB

rA

, K ∈ R

Ainsi, WA→B ne dépend pas du chemin suivi, donc la force est conservative et on obtient par identification

avec W = −∆Ep : Ep = mg0r2

2RT
+ K

Pour aller plus loin :
Attention a ne pas introduire la constante K n’importe comment ! On ne peut pas dire "Ep = mg0r2(2RT ) or
blablabla donc Ep = mg0r2(2RT ) + K" ; peu importe le blablabla, c’est faux, sauf pour K = 0. La constante
vient du calcul de primitive...

2. Déterminer K en choisissant une énergie potentielle nulle au centre O.

Réponse :
En C, on a r = 0 d’où Ep(r = 0) = K = 0. On a donc finalement

Ep = mg0r2

2RT
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3. Montrer que le système est conservatif et calculer son énergie mécanique.

Réponse :
Le système est soumis à une force #»

F qui est conservative (Q1) ainsi qu’à une force de guidage (l’énoncé
mentionne un champ magnétique) qui ne travaille pas (perpendiculaire au mouvement).D’après le théorème de
l’énergie mécanique en référentiel galiléen, son énergie mécanique est une constante. On peut la calculer à
l’état initial, où M est en A et sans vitesse :

Em = EmA = Ec + EpA = 0 + mg0R2

2RT
⇒ Em = mg0RT

2

4. Démontrer alors rigoureusement que :
Ep(x) = mg0

2RT
(h2 + x2)

puis tracer la courbe correspondante. On placera au moins un point particulier.

Réponse :
Géométriquement, on voit d’après le théorème de Pythagore que r2 = h2 + x2 d’où Ep = mg0

2RT
(h2 + x2)

Il s’agit d’une parabole tournée vers le haut. En x = 0, on a Ep(0) = mg0h2

2RT
, c’est par ailleurs le minimum de

la fonction, d’où la courbe suivante :

5. Déterminer la (les) position(s) d’équilibre et leur(s) stabilité(s).

Réponse :

On est a l’équilibre lorsque dEp

dx
= mg0x/RT = 0 ⇒ x = 0 De plus, on a d2Ep

dx2 = mg0/RT > 0 donc la position
d’équilibre est stable. Ce résultat est tout à fait conforme à ce qui peut être observé sur la courbe.
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6. Quelle est la nature du mouvement ? Déterminer les positions extrêmes xmin et xmax (démonstration attendue)
atteintes par le point M . Que vaut l’énergie cinétique en ces points ?

Réponse :
Le système est conservatif donc son énergie mécanique se conserve. On peut donc placer Em sur le graphe :
c’est une droite horizontale. Comme Em = Ec + Ep avec Ec ≥ 0, on a Ep ≤ Em, ce qui limite les positions
accessibles au point M . Le mouvement est confiné, le point M effectue des oscillations entre xmin et xmax.

En xmin et xmax, la vitesse est nulle car Ep = Em donc Ec = 0.
Pour déterminer xmin et xmax on résout l’équation

Ep(x) = Em ⇒ mg0
2RT

(x2 + h2) = mg0RT

2 ⇒ x2 + h2 = R2
T ⇒ x = ±

√
R2

T − h2

d’où xmin = −
√

R2
T − h2 et xmax = +

√
R2

T − h2

Ces deux positions correspondent respectivement aux points A et B.
Pour aller plus loin :
L’idée principale de la réponse est Em = Ep aux limites du mouvement, c’est cette relation qui permet de
définir les bornes. A l’inverse, il ne faut surtout pas commencer par dire que les positions extrêmes sont
associées aux points A et B, sinon il n’y a plus de démonstration possible.

7. Déterminer la vitesse maximale atteinte par le véhicule au cours de son mouvement puis réaliser l’application
numérique pour h = 3000 km. Faire apparaître sur le graphique l’énergie potentielle et l’énergie cinétique en ce
point.

Réponse :
La vitesse maximale est atteinte lorsque l’énergie cinétique est maximale donc lorsque l’énergie potentielle est
minimale, soit en x = 0. On a alors

Em = mg0RT

2 = Ec + Ep = 1
2mv2 + mg0h2

2RT
⇒ 1

2mv2 = mg0
2RT

(R2
T − h2) ⇒ v =

√
g0
RT

(R2
T − h2) ≈ 7 km/s

8. Par une méthode énergétique, déterminer l’équation différentielle à laquelle obéit l’abscisse x de M et la mettre
sous la forme :

ẍ + ω2
0x = 0

Exprimer ensuite ω0 en fonction de g0 et R.

Réponse :
L’énergie mécanique étant constante, sa dérivée par rapport au temps est nulle. En reprenant la première
expression de l’énergie mécanique :

Em = 1
2mẋ2 + mg0

2 (x2 + h2)

On dérive :
1
2m2ẋẍ + mg0

2R
2xẋ

En simplifiant par ẋ, on en déduit l’équation différentielle :

ẍ + g0
R

x = 0

En posant ω2
0 = g0

R , on reconnaît l’équation différentielle d’un oscillateur harmonique.
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9. En déduire l’expression de x en fonction du temps. Quelle est alors la durée Tas d’un aller simple ? Réaliser
l’application numérique.

Réponse :
La solution générale de cette équation s’écrit x(t) = A cos(ω0t) +B sin(ω0t). Les conditions initiales permettent
de déterminer A et B.
A t = 0, x = xA = −

√
R2 − h2 = A. De plus, ẋ = −Aω0 sin(ω0t) + Bω0 cos(ω0t) d’où à t = 0 ẍ(0) = Bω0 = 0

car le vitesse initiale est nulle. On a donc finalement

x(t) = −
√

R2 − h2 cos(ω0t)

Afin de mettre x(t) sous une forme faisant apparaître une amplitude positive, on peut aussi écrire :

x(t) =
√

R2 − h2 cos(ω0t + π)

La durée de l’aller simple est la moitié de la période des oscillations soit

Tas = 2π

2ω0
= π

√
R

g0
≈ 2,5 × 103 s ≈ 40 minutes

IV Étude d’un pendule simple

On considère un pendule simple constitué d’une masse m accrochée au bout d’un fil de
longueur L. Tant que le fil est tendu, on repère la position de la masse par l’angle θ représenté
sur la figure ci-contre.

On néglige les frottements. À l’instant initial, θ(0) = 0° et on donne au mobile une vitesse de
norme v0.

1. Déterminer les expressions des vecteurs position, vitesse et accélération en fonction des données, tant que le fil
est tendu, dans le repère qui vous semble le plus pertinent.

Réponse :
On se place en coordonnées polaires. On a alors

#»r = L #»u r ; #»v = Lθ̇ #»u θ ; #»a = Lθ̈ #»u θ − Lθ̇2 #»u r

2. Trouver l’équation différentielle vérifiée par θ(t).

Réponse :
Bilan des forces qui s’appliquent sur la masse :

— poids #»

P = −mg #»u z = −mg[− cos(θ) #»u r + sin(θ) #»u θ]
— tension du fil #»

T = −T #»u r
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On applique la loi de la quantité de mouvement sur la masse m dans le référentiel supposé galiléen du
laboratoire :

#»

P + #»

T = m #»a .

On projette selon #»u r et #»u θ et on divise par m :

−T/m + g cos(θ) = −Lθ̇2 ; −g sin(θ) = Lθ̈

On trouve ainsi :

θ̈ + ω2
0 sin(θ) = 0 ; ω0 =

√
g

L
.

3. Que devient cette équation pour des oscillations de faibles amplitudes ? Pour quel autre système avons-nous
rencontré la même équation ?

Réponse :
Pour de faibles oscillations, typiquement θ < 20 ◦, alors sin(θ) ≈ θ et l’équation différentielle devient celle de
l’oscillateur harmonique :

θ̈ + ω0
2θ = 0 .

4. Résoudre cette équation pour des oscillations de faibles amplitudes.

Réponse :
Les solutions sont de la forme :

θ(t) = A cos(ω0t) + B sin(ω0t).

Les conditions initiales sont :
θ(0) = 0 ; v(0) = v0 = Lθ̇(0).

On trouve alors
θ(t) = v0

Lω0
sin(ω0t) .
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